东方测控

行业企业市场标准科技新品会议展会政策原创

制造业大数据分析打造新一代智能工厂

行业上下游中国仪表网2015年07月10日 14:34人气:30247

  【中国仪表网 行业上下游】近年来,发展智能工厂成为全球制造业的显学,随着人力短缺、工资上涨、产品交期越来越短、市场需求变动大等问题出现,制造业正面临新一波转型挑战。如何在控制生产成本的同时,还能提高生产力与效率,则是转型的主要目的,也因此,从德国、美国到中国台湾各个制造大国,无不积极推动工业4.0,希望能协助制造业者解决经营困境、提升竞争力,而大数据分析与优化(Manufacturing Analytic&Optimization;MAO)则成为发展工业4.0的基础。
  
 
  制造业大数据分析五大应用
  
  深耕制造业多年的IBM,在大数据分析上提供的不只是产品,还有结合产业知识与丰富经验的顾问服务,帮助制造业者做出正确有效率的大数据分析。
  
  IBM商业分析部资深业务刘君彦指出,目前市面上有很多大数据分析的解决方案,但大多只能做到资料视觉化,也就是以图表呈现分析结果,而IBMMAO可以根据制造业所面临的问题,决定要做哪一种分析,例如预测或模拟,甚至整合财务或产销端资讯,找出解决问题的方法,这在智能制造过程中是非常重要的事,因为企业往往拥有大数据,却不知道该如何分析。
  
  IBM全球企业咨询服务事业群资深顾问李艺锋进一步指出,目前,高科技制造业者面临到的问题主要有三种,第一、未预期的物料问题或设备故障直接冲击产能,以致耗损大量成本;第二、因制程稳定性问题造成产品良率下降,不但影响获利更影响客户满意度;第三、制程世代转换越来越快,如何加快量产速度,成为获利的关键因素。因此,IBM根据制造业所面临到的问题与产品生命周期,归纳出制造业大数据分析五大应用模式:
  
  第一、物料品质监控。原物料品质不稳定其实有迹可循,然而传统SPC监控要等到发生问题时才会做出警示,此时不仅己经影响产品品质,更不容易找出原因,而MAO则是主动分析趋势变化,发现潜在问题即早做出预警,以便能及早解决(如:更换物料)维持产品品质。
  
  第二、设备异常监控与预测。传统SPC监控虽然也涵盖设备参数,但有时设备仍然会发生问题,工程师也不知道设备发生问题该怎么处理最有效,MAO运用设备感测资料及维修日志,找出发生设备异常的模式,监控并预测未来故障机率,好让工程师可以即时执行最适决策。
  
  第三、零件生命周期预测。零件或耗材有其生命周期,制造业者多半根据供应商建议进行定期更换,却忽略了生产及环境条件对耗损速度的影响,导致以下两种情况经常发生,一是在太早更换零件,造成不必要的开销,二是太晚更换零件,导致品质受影响。MAO根据生产及设备状态资料、零件资讯,精准预测零件生命周期,在需要更换的最佳时机提出建议,帮助制造业者达到品质成本双赢。
  
  第四、制程监控提前警报。制造业的制程参数相当多且彼此会互相影响,若是因为制程参数偏移而影响产品品质,工程师只能单一站点逐步追查,相当耗费时间,而MAO的做法是建立产品品质预测模型,找到最佳的制程黄金区间,一旦发现制程参数偏移到区间外,便即时发出警报,让工程师可以即时进行调整或其他决策。
  
  第五、良率保固分析。对制造业者来说,产品良率过低或是出售后于保固期间内发生问题,不仅会增加成本,更直接影响企业形象与客户满意度。因此MAO结合生产设备、产品良率及维修保固相关资料,建立预测模型,以预测良率并降低保固成本。
  
  李艺锋认为,MAO对制造业的效益不只在于预测潜在风险,还能提出最佳决策建议,建立最佳化生产流程,从而降低营运成本、创造最大化获利。
(本文来源:CIO时代网转载请注明出处
仪表网官方微信
@仪表网
已推荐
0

全年征稿 / 资讯合作

联系邮箱:ybzhan@QQ.com
  • 凡本网注明"来源:中国仪表网"的所有作品,版权均属于中国仪表网,转载请必须注明中国仪表网,http://www.ybzhan.cn/。违反者本网将追究相关法律责任。
  • 本网转载并注明自其它来源的作品,目的在于传递更多信息,并不代表本网赞同其观点或证实其内容的真实性,不承担此类作品侵权行为的直接责任及连带责任。其他媒体、网站或个人从本网转载时,必须保留本网注明的作品来源,并自负版权等法律责任。
  • 如涉及作品内容、版权等问题,请在作品发表之日起一周内与本网联系,否则视为放弃相关权利。
成丰仪表——中国第三代流量计领军品牌


返回首页