潍坊鲁盛水处理设备有限公司
免费会员

当前位置:潍坊鲁盛水处理设备有限公司>>污水处理一体化装置>> WSZ-A-1.5m3/h一体化污水处理设备

WSZ-A-1.5m3/h一体化污水处理设备

参  考  价面议
具体成交价以合同协议为准

产品型号

品       牌其他品牌

厂商性质生产商

所  在  地潍坊市

联系方式:逄政委查看联系方式

更新时间:2023-01-09 18:13:05浏览次数:173次

联系我时,请告知来自 仪表网
WSZ-A-1.5m3/h一体化污水处理设备 ,建立接纳和鼓励外资、民营资本积极参与污泥处理处置投资和运营的相关政策体系,因势利导的发展和探索适合我国国情的污泥处理处置工艺,促进污泥处置的市场化发展。

WSZ-A-1.5m3/h一体化污水处理设备
**没有中间商赚取差价。质量优:优质原材料;以技术为本,以质量为先,工艺*,售后完善。
需要咨询了解、报价、出处理方案、选型可以直接找我们,一条龙全部解决。
地埋式污水处理设备公司大量生产,价格包您满意,只要是国内客户一律送货上门、派人上门安装,出水保证按照国家规定排放标准设计。

1、脱硫方法概述
半干法脱硫指的是喷雾干燥烟气脱硫以及循环流化床烟气脱硫(也可以为半干法,zui后处理不同)。经破碎后石灰在消化池中经消化后,与脱硫副产物和部分煤灰混合,制成混合浆液,经浆液泵升压送入旋转喷雾器,经雾化后在塔内均匀分散。热烟气从塔顶切向进入烟气分配器,同时与雾滴顺流而下。雾滴在蒸发干燥的同时发生化学反应吸收烟气中的SO2。
湿法脱硫是脱硫过程在溶液中进行,吸附剂和脱硫生成物均为湿态。其特征是采用一种碱性液体与煤气的硫化氢、二氧化硫和氰化氢进行化学反应,生成新的不易气化的硫类化合物,再将吸收液与氧在催化剂作用下解析脱硫、脱氰并将其作为副产品回收,以除去煤气中大部分硫化氢、二氧化硫及氰化氢。脱硫系统主要有三大环节:吸收、再生、回收。吸收的目的在于用吸收剂将气体中所含硫化氢尽可能的脱除。再生的目的在于使吸收了硫化氢之后的吸收剂复原,并回收其中的硫。回收是将分离出的硫泡沫浓缩加工,即指硫泡沫的收集,过滤和熔硫得到副产品硫黄及残液的处理回收[1]。
2、干法脱硫工艺与石灰石一石膏湿法脱硫比较
2.1适用煤种。
半干法RCFB:适用于中、低硫煤。
石灰石一石膏湿法:适用煤种广。
2.2Ca/S比。
半干法RCFB:脱硫率>90%时为1.3~1.5。氧化钙纯度要求≥90%,并要有非常高的活性(T60标准),达不到以上要求时,将影响装置的脱硫率及正常运行。
石灰石一石膏湿法:1.01~1.05,一般为1.03,纯度达不到要求时,zui终仅影响脱硫副产品石膏的质量。
2.3脱硫效率。
半干法RCFB:稳定运行一般在80%左右,若需要进一步提高,则需降低烟气趋近温差,增加Ca/S和喷水量,但会对下游设备,如除尘器、引风机等带来不利影响。烟气含硫量波动时,因为有大循环灰量,难以灵敏调整控制,脱硫效率难以保证。
石灰石一石膏湿法:一般可在95%以上稳定运行,对环保要求的适应性强。烟气含硫量变化时,易于调整控制,脱硫效率较稳定。

2.4耗电量。
半干法RCFB:机组容量的0.5oA~1.0%,脱硫效率在80%左右时,为0.6%左右;当脱硫效率>90%时,耗电量上升很快,将达到1%左右。
石灰石一石膏湿法:机组容量的1.0%~1.5%。
2.5对ESP(电除尘器)的影响。
半干法RCFB:初始设计时ESP负荷很高,进口浓度800g/Nm3(远高于电厂正常电除尘器进口的20~30g/Nm3),ESP2除尘效率将达到99.9875%。随脱硫率的变化增加Ca/S,ESP负荷急剧增加。当烟气含硫量变化时,为保证脱硫率,或为满足环保要求的不断提高而提高脱硫效率,采取以上降低烟气趋近温差,增加喷水量和Ca/S措施时,将导致ESP低温腐蚀,排灰易粘结(塔壁也易于结灰),严重时,将影响装置的正常运行[2]。
石灰石一石膏湿法:没有后ESP,无影响。经脱硫塔洗涤后,烟尘总量减少50%~80%左右,FGD出口烟尘浓度小于50mg/Nm3。
2.6对机组的影响。
半干法RCFB:因故障停电等原因使CFB停运,会导致塔内固态物沉积,重新启动需清理沉积固态物,由于无旁路,当后ESP和回灰系统发生堵塞进行检修时,机组将停运。
石灰石一石膏湿法:因FGD是独立系统,有旁路,故无影响。
2.7对机组负荷的适应性。
半干法RCFB:负荷的变化会引起烟气流速的变化,从而影响脱硫反应及装置的运行。
石灰石一石膏湿法:较好。
2.8水。
半干法RCFB:水质要求高;无废水排放。
石灰石一石膏湿法:耗水量相对多一点,但水质要求不高,可用水源水;仅有少量废水排放。
2.9吸收剂制备。
半干法RCFB:需大批量外购符合要求的T60标准的石灰粉,RCFB脱硫效果的保证及装置的运行可靠性*依赖于石灰的高纯度及高活性[3]。
石灰石一石膏湿法:可外购石灰石粉或块料,石灰石块料价格便宜,直接购粉则可大幅度降低投资及耗电量,但相应增加了采购成本。
2.10脱硫塔出口温度。
半干法RCFB:80℃。要提高脱硫效率,必将增加喷水量,从而使脱硫塔出口温度进一步降低,但会增加对ESP的腐蚀。
石灰石一石膏湿法:≥50℃。由于脱硫塔排放烟温低,整个系统增加了防腐处理,并增加了MGGH设备以提高排放烟温,从而使投资增加。
2.11副产品输送利用。
半干法RCFB:目前,仅适宜用于填坑、铺路,应用价值低。用于其他场合的应用方法研究不多。灰易产生粘结,既影响输送,也影响装置的运行。当脱硫渣排入灰场时,将影响粉煤灰的综合利用。在抛弃过程中需要考虑增设合适的储运设施,同时也增加一定的运输和储存成本。
石灰石一石膏湿法:脱硫石膏质量优于天然石膏,可综合利用,应用价值较高如采用抛弃法,可节省部分投资,输送也不会有问题[4]。
2.12占地面积。
半干法RCFB:在大容量机组考虑采用1炉1塔时占地较小。
石灰石一石膏湿法:较大。针对我国国情,污泥干化焚烧工艺虽然成熟稳定、减量效果明显,且占地少,但其工程投资和运行费用相对较高,且各污水处理厂污泥的泥质和热值也不尽相同,因此必须进行经济比较,而不能不加分析的无限制的推广应用,在大城市、大型城镇群以及用地紧张地区比较适用;污泥堆肥必须结合用户的需求,在市场调研的基础上,可以考虑推广应用;污泥厌氧消化与污泥好氧消化相比,能耗小、能源可回收利用、经济性较好,可以实现污泥的稳定化、无害化,应该大力推广应用;我国土地资源比较多,多种形式的土地利用是适合我国国情的污泥处置技术,在有条件的地区可以加以推广应用。
WSZ-A-1.5m3/h一体化污水处理设备技术政策基本空白
技术政策是技术路线的有效实施的重要保障。我国污泥处理处置的技术政策现在仍属空白,需要从以下几方面着手解决:
◇ 建立污泥处理处置的评估体系。立即开展我国污泥产量、污泥质量、污泥处理处置及再利用现状的调研与评价工作;加快城市污水处理厂污泥处理、处置技术政策的编制工作;抓紧建立污泥处理处置技术的评价体系和方法。
◇ 鉴于目前用于污泥处理处置的资金不足,须制定有关建设和运行的保障性鼓励措施,污泥处理处置应与污水处理同等重视。根据当地实际状况,制定合理的污水收费政策和体系(应包括污泥处理处置运行费用)。
◇ 需要财税政策的倾斜。国家应对污泥处理处置过程中的资源化工程给以政策性引导。通过财政补贴、税收优惠等经济杠杆来引导企业积极采用能量回收和物质回用的工艺技术。
◇ 建立接纳和鼓励外资、民营资本积极参与污泥处理处置投资和运营的相关政策体系,因势利导的发展和探索适合我国国情的污泥处理处置工艺,促进污泥处置的市场化发展。
污泥问题必将成为中国下一阶段重要的环境问题,本文期望通过以上的讨论引发各界对污泥处理处置问题的重视,并使污泥处理处置的若干认识误区得以澄清,进而帮助和促进有关技术路线和技术政策的制定,使城市污水处理行业得以健康发展。


1.污水换热器
利用未经处理的污水作为水源进行采暖制冷,是水源热泵的一种方式,由于污水中悬浮物、污垢沉淀物较多,而且污水的酸碱度较大,极易对换热器产生腐蚀,结垢、堵塞等现象,从而严重地影响传热效率。通过实验测试,城市原生污水动力粘度(15℃)较清水动力粘度(15℃,1.14×10-6m2/s);大40倍左右,即4.56×10-5m2/s。
如此高的粘度、腐蚀性和悬浮物对换热器的材质、表面粗糙度和内部结构设计都提出了很高的要求。根据对国内换热器行业的考察,目前国内还很少有能够满足如此恶劣工作条件且价格适宜的换热器,因此,zui终作为项目参与方的北欧相关专家组根据实地污水采样检测,经过长时间的研究,确定了 该污水换热器的材料,采用各种新型材料及表面处理技术,解决了防腐、堵塞和结垢等问题。该换热器部件采购于芬兰、瑞典、丹麦等国家,zui终由马来西亚组装成型。项目运行三年以来,换热器未出现任何腐蚀、堵塞和结垢的现象,基本能够满足污水热泵系统正常运行的需要,证明这种换热器比较适合中国国内的污水水质现状。
2.格栅
污水在进入沉淀池前先经过一道粗格栅,以拦截污水中较大颗粒的漂浮物和悬浮物,拦截的栅渣由人工清除。污水从沉淀池出来后再经过一道细格栅,以拦截污水中小颗粒的漂浮物和悬浮物,拦截的栅渣每隔大约半个小时自动传输到垃圾池。经过两道格栅的过滤,污水中的大小颗粒漂浮物和悬浮物已经基本拦截,而后再进入污水换热器,这样可以避免换热器的堵塞。
实测数据分析
该水源热泵系统从2003年1月10日投入正常运行后,经历了北京近年来zui寒冷的冬天,充分考验了污水源热泵机组的性能。机组冻夏季运转状况良好。
为了更准确的分析污水源热泵的经济性,我们安排专职人员在设备运转现场连续记录了两个多月,每隔两个小时记录一次数据,包括电表数、温度、压力等。单级全程自养脱氮(CANON)工艺
1999年THIRD K A等首先提出,CANON是一种基于亚硝酸氮的单级全程自养脱氮工艺,其理论基础是在一体化反应器体系内同时实现半短程硝化与厌氧氨氧化反应。在生物膜表面或颗粒污泥表面,由于处于低溶解氧环境,部分氨氮在氨氧化菌的作用下被氧化成亚硝酸氮;在生物膜内部或颗粒污泥内部,由于处于厌氧环境,产生的亚硝酸氮和剩余氨氮在厌氧氨氧化 菌的作用下反应生成氮气,并产生很少量的硝酸氮,从而实现氨氮从废水中的去除。
该工艺去除氨氮的影响因素有温度、DO、ph值、水中游离氨(FA)、有机物、重金属离子、重金属沉淀物等。CANON工艺虽然革新了传统生物脱氮的思路,但要大规模工程化还存在一些局限性。例如启动周期长,厌氧氨氧化反应阶段的功能菌 AnAOB增殖缓慢,世代时间为7~14 d,是反硝化菌的几十倍,因此富集培养困难,世界上个生产性装置启动时间长达3.5年;其次温度要求高,现已报道的CANON 工艺基本都是30 ℃以上,并不是所有废水都能达到该标准,若加热势必会带来能耗增加,运行易失稳,由于亚硝酸盐积累而进行排泥,结果降低了反应器的生物质浓度 造成系统失稳;还会排放温室气体N2O。

会员登录

×

请输入账号

请输入密码

=

请输验证码

收藏该商铺

X
该信息已收藏!
标签:
保存成功

(空格分隔,最多3个,单个标签最多10个字符)

常用:

提示

X
您的留言已提交成功!我们将在第一时间回复您~
在线留言