产品推荐:水表|流量计|压力变送器|热电偶|液位计|冷热冲击试验箱|水质分析|光谱仪|试验机|试验箱


仪表网>技术中心>使用指南>正文

欢迎联系我

有什么可以帮您? 在线咨询

光纤传感空分复用下多点温度与应力的监测显示

   2013年03月05日 16:13  
  摘要:多参量多点实时监测显示是传感研究领域的一项重要技术。以光纤Fabry-Perot(F-P)腔与光纤Bragg光栅(FBG)传感器的串联复用结构为单元构建空分复用(SDM)系统,设计了温度、应力多点实时显示的方案。由FPGA构建的SOPC与NiosⅡ完成对多监测点的数据采集,由VB串口通信接收FPGA存储器存储的采集数据,再把此数据由高斯曲线拟合方程处理得到温度和应力的参数值,zui后用VB实现监测显示。结果表明F-P腔与FBG串联能有效克服温度与应力的交叉敏感,FPGA结合VB能很方便的实现多参量多点的实时监测显示。
  
  关键词:光纤传感;空分复用;温度与应力显示;FPGA;VB
  
  引言
  
  近年来,光纤光栅传感技术的应用在各行各业中得到了快速的发展。人们对待测物理量在精度、性能、容量以及多参数等方面提出了更高的要求。这极大地促进了光纤光栅传感复用类型相关理论和技术的研究,而解调显示技术正是其中的一个重要环节,现常以ARM,DSP,FPGA等芯片为核心控制多路数据信号的采集、存储和处理,并用LabVIEW,VB,Matlab及其混合使用等做界面显示处理。
  
  文中FPGA与VB结合实现多参量的监测显示,得益于FPGA高度集成、内部资源丰富、功能强大、时序控制、支持并行处理、编程灵活等优点;VB简洁易懂、界面设计简单。
  
  本文主要完成了对多监测点双参数监控显示的研究。FBG能通过反射或透射波长实现对温度的测量;F-P可用做可调谐F-P腔、滤波器、传感器等,调节腔长与电压的关系能实现对应力解调。故首先设计了一种基于FBG与F-P腔传感器串联复用,并对其进行空分复用,构建成能实现多监测点双参数高精度解调的系统。分析F-P腔与FBG串联复用的光谱,可知能实现待测信号的高精度解调:即F-P腔长(应力)和FBG反射中心波长(温度)的同时测量。并使用FBG和F-P腔分别对温度与应力进行测量,进而与F-P腔和FBG串联复用所得结果进行比较,通过实验对该方法进行了验证。而空分复用就能实现多个监测点的双参数高精度解调。此后由FPGA构建的SOPC与NiosⅡ完成对多监测点双参数的数据采集;由VB串口通信进行数据接收,并把采集到的数据带入高斯曲线拟合方程中,求出具体的温度与应力,并用VB界面实现了监控显示。
  
  1、原理分析与理论模型
  
  1.1FBG的应变和温度响应
  
  根据光纤耦合模型理论可知,满足Bragg条件的反射光波长为:
  
  λB=2neffΛ(1)
  
  式中:Λ为光栅周期;neff为有效折射率。当Λ和neff因外界同时引起较小的变化ΔΛ和Δneff时,由Bragg条件可知,反射波长会发生移位ΔλB。ΔλB可表示为:
  
  △λB=2△neffΛ+2neffΔΛ(2)
  
  若温度、应变共同作用时,产生的Bragg波长位移ΔλB,用线性关系可表示为:
  
  式中:α是光纤材料的热膨胀系数;△T是温度变化量;pmn为材料的光弹系数;v2,v3为泊松比。由式(3)可知,由单一FBG在测得中心波长移动ΔλB时,还需知道温度才能求出应变,这就是温度与应变的交叉敏感问题。当应变和温度同时发生变化时,光纤光栅无法区分由二者独自引起的波长变化,测量其中一个量时,总会受到另一个量的影响。为解决交叉敏感问题,人们提出了多种方法,其中串联复用传感就是一种有效的方法。如光纤布拉格光栅和长周期光栅结合的传感器系统,该系统能实现油气井下应力和温度的同时测量。本文研究F-P腔与FBG串联复用传感,能消除交叉敏感影响,并对该串联复用传感器进行空分复用实行多点监测,zui终用VB编码实现数值界面显示。
  
  1.2F-P腔与FBG串联复用传感器的解复用
  
  因为F-P腔有温度-压力交叉敏感性能实现对温度的补偿,能使测量精度提高,故可采用F-P腔与FBG串联复用传感器的解复用。其结构如图1所示。
  
  原理阐述:光从光纤左端入射Iin,进入FBG与F-P腔串联复用的结构中,首先经过FBG温度传感器,此时Bragg反射波长附近的一部分光I1被反射,而透射光I2入射到F-P腔传感器,得到F-P反射光谱为一低反衬度的F-P腔干涉光谱I3,I3再通过FBG传感器,其透射光部分为I4。与之前的FBG传感器反射光I1相叠加形成zui终的输出光谱Iout。其数学表达式为:
  
  Iout=I1+I4=Iin[fFBG+(1-fFBG)2fF-P](4)
  
  式中:fFBG=R·exp[-(λ-λB)2/c2],即用高斯分布来表示FBG的反射谱,R为光栅峰值反射率;λB为Bragg反射中心波长;c值的大小用于表征反射峰的宽度;fF-P=2r[1+cos(4πL/λ+π)],其中r为光纤端面反射率。L为F-P腔的腔长,λ为光波长。
  
  由式(4)可知,由传感器返回的光谱并不是FBG传感器与F-P腔传感器各自反射光谱的简单叠加。此时,若直接采集光谱信号中的FBG反射峰值波长作为FBG传感器的温度解调信号,将导致结果发生偏差,影响温度测量精度。为了得到的FBG反射光谱信号,将式(4)展开成为关于fFBG的一元二次方程:
  
  解此方程,可得的FBG反射光谱,进而通过对解出的光谱峰值部分进行高斯拟合,求解出中心位置,即可解出FBG的中心波长。式(5)中Iout和Iin是可直接测量得到的光谱分布数据,fF-P通过F-P腔反射光谱的交叉相关解调算法得到。消除FBG对F-P腔解调的影响只需找到FBG的粗略峰值位置,将FBG峰值部分光谱数据从光谱中扣除。由于FBG光谱宽度远小于宽谱光源宽度,而交叉相关计算对于小范围光谱数据的缺失不敏感,因而不影响F-P腔解调结果的精度。
  
  将相关解调计算得到的fF-P带入式(5),得到方程的解为:
  
  在实际解调过程中,可取测量得到的原始FBG光谱峰值附近一定范围的光谱数据做上述运算,得到分离后FBG的新光谱并进行高斯拟合,即可得到的FBG的中心波长位置。故该串联复用能实现双参数解调。
  
  2、解调研究
  
  2.1FBG与F-P腔传感串联复用进行空分复用的解调
  
  分析FBG与F-P腔传感串联复用可知,能同时实现对温度和应变的高精度测量。通过对该串联复用系统进行空分复用,能实现对多监测点的双参数测量。以可调谐窄带激光F-P腔做光源,可使各分路的光功率提高,提高系统的信噪比,解调范围可控制。为此构建一个能同时测量温度和应变,并且能大幅度提高度的空分复用系统。对该空分复用系统各路光纤进行解调设计的原理如图2所示。
  
  首先用FPGA控制多路选择开关,选择具体的某路光纤。进入到光电探测器中,将光信号转换为模拟电信号并用A/D转换为数字信号。采集完数据并存储于FPGA存储器中,再进行下一路光纤数据的采集,如此循环,在一给定的时序内完成所有光路的数据采集,并将数据用数组存储。zui终通过对FPGA进行配置与编程,实现对存储器的读写转换,用RS232数据线通过VB串口通信连接到计算机中进行处理,实现对温度/应力的显示。FPGA的I/O端口可扩展为多路开关和A/D转换,进一步能实现对更多路的监测解调。
  
  2.2数值界面监控显示
  
  2.2.1软核配置与数据采集
  
  以FPGA开发板EP2C8Q208为硬件平台,在QuartusⅡ11.0的SOPCBuilder里,设计NiosⅡ软核处理器及功能模块。直接调用Altera提供的IP核,功能模块IP核经配置后,即可加入到系统中。此处添加的模块有CPU,SDRAM,FLASH,PIO,SPI,M4KRAM,UART,DS等。其连接图如图3所示。
  
  PIO模块主要用来实现A/D的配置和控制;RAM为缓冲存储块,设置为双端口RAM,一个端口写,另一个端口读;DS时钟模块进行时序控制;SDRAM随机存储器;FLASH程序下载固化时用;NiosⅡ软件编程控制模块,通过各模块的配置以及NiosⅡ的程序来寻址IP核,完成数据的采集;以RS232串口线完成FPGA与PC的连接,并由UART与编写的VB串口实现通信。
  
  2.2.2数据串口通信
  
  主要是将NiosⅡIDEmain()里的数组寻址RAM模块读来的数据,传送到VB串口接收窗口中,以NiosⅡ软核处理器中的UART(RS232)实现数据与PC通信。此处需在PC上用VB编写一个串口通信端口来接收RAM里的数据。注意UART与VB接收端口的波特率必须一致,否则不能成功通信。以下为VB处理代码:
  
  (1)VB串口端口通信,由mscomm控件来完成通信,其初始化为:
  
  (3)TxtReceive接收文本的数据,每过5s刷新数据,并继续接收由FPGA采集传来的数据。由timer控件处理,其属性Enabled为True,Interval为5000,timer()事件为Form1.Text1.Text=串口调试软件.TxtReceive.Text。确保引用接收到的数据是实时正确的。
  
  2.2.3VB界面显示
  
  将VB串口通信接收端接收到的数据,经过高斯曲线拟合方程处理,求出对应的温度和应力。由于条件限制,实验中采用的FBG中心波长均为1550nm,腔长为15μm的F-P腔。以第1路光纤为例,实验测得的参数由Matlab进行高斯曲线拟合结果如图4所示:图4(a)为F-P腔长与应力变化关系曲线,在F-P腔长为8.5μm范围内对应着10-3ε,拟合的高斯方程可表示为:
  
  F=(L-15)×1000/85(7)
  
  式中:L代表所测的F-P腔长;F代表应力。故由测得的腔长L可求出F。
  
  图4(b)为FBG反射中心波长与温度变化关系,拟合的高斯方程为:
  
  λB=9.565T+1550.12175(8)
  
  式中:T代表所测温度;λB代表FBG反射中心波长。故由测得反射中心波长λB可求出T。zui后通过VB代码编写实现所测温度与应力的界面监控显示。
  
  这里以引用VB串口接收8路通道采集的数据为例,双参数显示的代码如下:
  
  由FBG0采集的数据,用Matlab高斯曲线拟合通过方程处理求出T/F。
  
  由FBG1采集的数据,用Matlab高斯曲线拟合通过方程处理求出T/F。
  
  多路解调双参数T/F数值监控显示的实验结果如图5所示。
  
  3、结语
  
  理论与实验结果分析可知,FBG与F-P腔串联复用传感器可以消除温度与应力的交叉敏感,能实现对监测点温度与应力的高精度解调,同时由空分复用可实现多个监测点的同时测量。系统设计采用FPGA+NiosⅡ完成数据的采集与VB通信的处理。实验结果表明,该系统性能可靠,准确的对温度与应力实现实时监控,且运行稳定。而FPGA的预留I/O端口可作为扩展端口使用,以便实现更多监测点的测量。当实时性达到一定精度后,该方案就能满足大型工程的应用需求,如在航空航天的卫星发射时,对其各子系统温度与应力的实时动态监控;以及对大型机械厂房温压的实时动态监控等等。

免责声明

  • 凡本网注明“来源:仪表网”的所有作品,均为浙江兴旺宝明通网络有限公司-仪表网合法拥有版权或有权使用的作品,未经本网授权不得转载、摘编或利用其它方式使用上述作品。已经本网授权使用作品的,应在授权范围内使用,并注明“来源:仪表网”。违反上述声明者,本网将追究其相关法律责任。
  • 本网转载并注明自其它来源(非仪表网)的作品,目的在于传递更多信息,并不代表本网赞同其观点或和对其真实性负责,不承担此类作品侵权行为的直接责任及连带责任。其他媒体、网站或个人从本网转载时,必须保留本网注明的作品第一来源,并自负版权等法律责任。
  • 如涉及作品内容、版权等问题,请在作品发表之日起一周内与本网联系,否则视为放弃相关权利。
联系我们

客服热线: 15267989561

加盟热线: 15267989561

媒体合作: 0571-87759945

投诉热线: 0571-87759942

关注我们
  • 下载仪表站APP

  • Ybzhan手机版

  • Ybzhan公众号

  • Ybzhan小程序

企业未开通此功能
详询客服 : 0571-87759942