网站首页企业百科 产品百科 技术百科 人物百科

凝胶渗透色谱 我有新说法
358 0

    凝胶渗透色谱(Gel Permeation Chromatography、GPC)是1964年,由J.C.Moore首先研究成功。不仅可用于小分子物质的分离和鉴定,而且可以用来分析化学性质相同分子体积不同的高分子同系物。(聚合物在分离柱上按分子流体力学体积大小被分离开)


中文名 凝胶渗透色谱             外文名 Gel Permeation Chromatography

缩    写    GPC                    时    间    1964

1基本原理

分离原理

凝胶具有化学惰性,它不具有吸附、分配和离子交换作用。让被测量的高聚物溶液通过一根内装不同孔径的色谱柱,柱中可供分子通行的路径有粒子间的间隙(较大)和粒子内的通孔(较小)。当聚合物溶液流经色谱柱(凝胶颗粒)时,较大的分子(体积大于凝胶孔隙)被排除在粒子的小孔之外,只能从粒子间的间隙通过,速率较快;而较小的分子可以进入粒子中的小孔,通过的速率要慢得多;中等体积的分子可以渗入较大的孔隙中,但受到较小孔隙的排阻,介乎上述两种情况之间。 [1]  经过一定长度的色谱柱,分子根据相对分子质量被分开,相对分子质量大的在前面(即淋洗时间短),相对分子质量小的在后面(即淋洗时间长)。自试样进柱到被淋洗出来,所接受到的淋出液总体积称为该试样的淋出体积。 当仪器和实验条件确定后,溶质的淋出体积与其分子量有关,分子量愈大,其淋出体积愈小。

(1) 体积排除

(2)限性扩散

(3) 流动分离

校正原理

用已知相对分子质量的单分散标准聚合物预先做一条淋洗体积或淋洗时间和相对分子质量对应关系曲线,该线称为“校正曲线”。聚合物中几乎找不到单分散的标准样,一般用窄分布的试样代替。在相同的测试条件下,做一系列的GPC标准谱图,对应不同相对分子质量样品的保留时间,以lgM对t作图,所得曲线即为“校正曲线”。通过校正曲线,就能从GPC谱图上计算各种所需相对分子质量与相对分子质量分布的信息。聚合物中能够制得标准样的聚合物种类并不多,没有标准样的聚合物就不可能有校正曲线,使用GPC方法也不可能得到聚合物的相对分子质量和相对分子质量分布。对于这种可以使用普适校正原理。

普适校正原理

由于GPC对聚合物的分离是基于分子流体力学体积,即对于相同的分子流体力学体积,在同一个保留时间流出,即流体力学体积相同。

两种柔性链的流体力学体积相同:

[η]1M1=[η]2M2

k1M1α1+1=k1M2α2+1

两边取对数:lgk1+(α1+1)lgM1=lgk2+(α2+1)lgM2

即如果已知标准样和被测高聚物的k、α值,就可以由已知相对分子质量的标准样品M1标定待测样品的相对分子质量M2。

2实验部分

直接法:在测定淋出液浓度的同时测定其粘度或光散射,从而求出其分子量。

间接法:用一组分子量不等的、单分散的试样为标准样品,分别测定它们的淋出体积和分子量,则可确定二者之间的关系。

仪器

GPC仪的组成:泵系统、(自动)进样系统、凝胶色谱柱、检测系统和数据采集与处理系统。

2.1.1.泵系统:包括一个溶剂储存器、一套脱气装置和一个高压泵。它的工作是使流动相(溶剂)以恒定的流速流入色谱柱。泵的工作状况好坏直接影响着终数据的准确性。越是精密的仪器,要求泵的工作状态越稳定。要求流量的误差应该低于0.01mL/min。

2.1.2.色谱柱:GPC仪分离的核心部件。是在一根不锈钢空心细管中加入孔径不同的微粒作为填料。每根色谱柱都有一定的相对分子质量分离范围和渗透极限,色谱柱有使用的上限和下限。色谱柱的使用上限是当聚合物小的分子的尺寸比色谱柱中大的凝胶的尺寸还大,这时高聚物进入不了凝胶颗粒孔径,全部从凝胶颗粒外部流过,这就没有达到分离不同相对分子质量的高聚物的目的。而且还有堵塞凝胶孔的可能,影响色谱柱的分离效果,降低其使用寿命。色谱柱的使用下限就是当聚合物中大尺寸的分子链比凝胶孔的小孔径还要小,这时也没有达到分离不同相对分子质量的目的。所以在使用凝胶色谱仪测定相对分子质量时,必须首先选择好与聚合物相对分子质量范围相配的色谱柱。

2.1.3.填料(根据所使用的溶剂选择填料,对填料基本的要求是填料不能被溶剂溶解):交联聚苯乙烯凝胶(适用于有机溶剂,可耐高温)、交联聚乙酸乙烯酯凝胶(gao100℃,适用于乙醇、丙酮一类极性溶剂)多孔硅球(适用于水和有机溶剂)、多孔玻璃、多孔氧化铝(适用于水和有机溶剂)

2.1.4.柱子:玻璃、不锈钢

2.1.5.检测系统:通用型检测器:适用于所有高聚物和有机化合物的检测。有示差折光仪检测器、紫外吸收检测器、粘度检测器。

2.1.6.示差折光仪检测器:溶剂的折光指数与被测样品的折光指数有尽可能大的区别。

2.1.7.紫外吸收检测器:在溶质的特征吸波长附近溶剂没有强烈的吸收。

2.1.8.选择型检测器:适用于对该检测器有特殊响应的高聚物和有机化合物。有紫外、红外、荧光、电导检测器等。

操作

2.2.1.溶剂的选择: 能溶解多种聚合物;不能腐蚀仪器部件;与检测器相匹配。

2.2.2.把激光光散射与凝胶色谱仪联用,在得到浓度谱图的同时,还可得到散射光强对淋出体积的谱图,从而计算出分子量分布曲线和整个试样的各种平均分子量

2.2.3.激光光散射实验中必须对样品严格除尘,溶液中的灰尘会产生强烈的光散射,严重干扰聚合物溶液光散射的测量。溶液除尘是光散射成败的关键。首先是溶剂除尘,配置测试样品的溶剂应进行精馏,并经过0.2μm超滤膜过滤后方可使用。配好的溶液也要用0.2μm的超滤膜过滤。另外,测试中所用的器械,如:注射器等,使用前要用洗液浸泡,清水强力冲洗。

3优点

(1)全部组分均在溶剂分子洗脱之前洗脱下来,分离时间短。

(2)可以预测洗脱时间,可以连续进样。

(3)凝胶色谱的分离过程不依靠分子间作用力,一般情况下,没有强保留的分子累积在色谱柱,所以分离时试样组分不会丢失,柱的使用寿命也会延长。

(4)保留时间短,色谱峰窄,容易检测。 [1] 

4应用

凝胶色谱不但可以用于分离测定高聚物的相对分子质量和相对分子质量分布,同时根据所用凝胶填料不同,可分离脂溶性和水溶性物质,分离相对分子质量的范围从几百万到100以下。近年来,凝胶色谱也广泛用于小分子化合物。相对分子质量相近而化学结构不同的物质,不可能通过凝胶渗透色谱法达到*分离纯化的目的。凝胶色谱不能分辨分子大小相近的化合物,相对分子质量相差需在10%以上才能得到分离。

参考资料

参考资料编辑区域


相关产品RELEVANT PRODUCTS
  • 凝胶渗透色谱gpc系统

    凝胶渗透色谱gpc系统,于高聚物以的分子量以及分子量分布的测定。主要由液相等度,gpc色谱柱,高灵敏的示差折光检测器,以及含gpc功能的色谱工作站组成。在线脱气机与柱温箱为选配装置,建议购买。依利特能提供整体方案。
  • 全自动凝胶渗透色谱

    j2 preplinc gpc是一款专业、成熟的全自动凝胶渗透色谱仪,结构紧凑,检测器内置,管路短,死体积小,提供专业的快速gpc柱和传统的玻璃柱。
  • 分析型凝胶渗透色谱仪gpc

    新一代微量凝胶色谱mgpc的介绍 自从60年代中期到现在,分析型凝胶渗透色谱仪在大分子分子和表征领域得以广泛的应用。
  • 凝胶渗透色谱

    lc-15型凝胶净化色谱仪采用模块化设计,体积小巧,操作方便,可广泛用于净化食品、粮油谷物、环境、中药、生物组织等各类复杂样品。适用于epa(sw-846,3640a方法)、aoac、s19、hj 834-2017 、gb 5009.32-2016等国内国际标准。应用领域:食品 生物 轻工 药物 环境 有机物和聚合物
  • 常温凝胶渗透色谱

    1260infinityiigpc/mds系统可配备示差折光检测器、黏度检测器和激光光散射检测器,专为进行具有成本效益的常规聚合物表征而设计,经济实用型gpc系统
  • 高温凝胶渗透色谱

    功能要求:适用于多种不同有机溶剂
  • pl-gpc50常温凝胶渗透色谱

    凝胶色谱仪(gpc)又称尺寸排阻色谱(sec)
  • pl-gpc50常温凝胶渗透色谱

    pl-gpc50 常温凝胶色谱仪:是适用于常温到50℃**离,经典型gpc/sec系统,该系统为一体化设计,集色谱泵、输液系统、所有检测器(示差检测器、粘度检测器、光散射检测器等)色谱柱、柱温箱为一体的恒温gpc/sec系统,同时可以搭载紫外检测器、二极管阵列、蒸发光散射检测器等,并可实现与主流品牌的傅里叶红外直接联用。基于其一体化设计,确保整个聚合物分析过程的一致性温控,为用户提供无与能比的灵敏......
  • pl-gpc220高温凝胶渗透色谱

    pl-gpc220高温凝胶色谱具有目前市场上**的控温范围,适用于**温度到220℃的聚合物分析的系统。四级温度保护确保仪器和色谱柱的安全。整套系统通过了非常严格的ce认证,保障实验室及人员安全。同样可选粘度检测器和光散射检测器,还有高温制样系统sp-260,帮助溶解高温样品。
  • ultimate 3000 凝胶渗透色谱

    该系统推荐用于主要使用 uhplc 兼容系统但仍需要运行传统 lc 方法的实验室。如果您计划提高样品通量并缩短从采集样品到出报告的时间,则快速分离双系统是您的。快速分离双系统用户可以降低检测限,提高峰分辨率,延长色谱柱使用寿命,应用*的 2d uhplc 方法,并通过单个系统设置开发更强大的方法。并行运行反梯度的能力通过向分离后的喷雾器源提供一致的流动相混合物确保获得准确的结果,解决了基......
查看更多
×

是否已完成本次百科编辑