HDCJ雷击冲击电压发生器满足现行标准、国家标准及有关行业标准。本套装置所输出电压波形及效率:(负荷电容小于5500pF时包含分压器电容)下,可产生标准雷电冲击电压波形数量:3个。
A.标准雷电冲击全波电压波形
波头时间:1.2±30%μs,波尾时间:50±20%μs,过冲:小于5%,效率:不低于90%。±1.2/50μs标准雷电冲击电压全波,效率大于90%。
B.标准雷电冲击截波电压波形。
波头时间:1.2±30%μs,过冲:小于5%,截断时间:2~6μs,电子时延控制,效率:不低于90%,采用截断装置可产生截断时间2~6μs的雷电截波,截波分散性小于100ns。
C.变压器电抗器雷电冲击电压试验的示伤电流全波波形。
二.执行标准:
GB311.1-1997高压输变电设备的绝缘配合
GB/T16927.1-1997高电压试验技术,一般试验要求
GB/T16927.2-1997高电压试验技术,测量系统
GB/T16896.1-1997高电压冲击试验用数字记录仪
ZB F24 001-90冲击电压测量实施细则
GB191 包装运标志
GB4208 外壳防护等级
GB813-89 冲击试验用示波器及峰值表
三.使用条件:
本冲击电压发生器试验系统装置主要适用于110kV及以下电力产品的雷电冲击电压全波,也可用于其它产品的冲击试验。
1.海拔高度不超过1500m
2.环境温度:-15~+50℃
3.空气相对湿度:≤90%
4.安装使用地点:户内使用,可移动
5.必须设有一个屏蔽控制室及可靠接地点,接地电阻<1Ω!
6.冲击发生器(型号:HDCJ-900/33.7)
A.冲击发生器主要技术参数
B.标称雷电波冲击电压:HDCJ-900kV
C.标称容量(能量):33.75kJ
D.级电容:0.6μF,100kV(100kV-0.6μF)干式全绝缘封装
E.级电压:±150kV
F.级数/级容量:5 / 6.75kJ
G.输出波形:±1.2/50μs标准雷电冲击电压全波,效率大于90%;
H.同步范围:大于20%
I.使用持续时间:
小于80%额定工作电压时可连续工作
大于80%额定工作电压时可间断工作
J.幅值调节误压差小于1%,输出电不大于10%设备标称电压。
K.同步误动率:小于1%
L.底座:2m × 1.5m (脚轮移动)。
高度:约3.5米。
重量:约860kg。
7.冲击电压发生器的技术说明
A.发生器的结构
B.采用瑞士HAEFELY公司SGS系列的主回路设计,从而实现了整体超小型。
C.采用每分钟一转的低速齿轮齿条传动机构调整各级球隙,不仅无噪声、磨损小,而且定位快速、准确。
D.采用弹簧压接、方便拔插的调波电阻固定机构,保证了接触的可靠性,使输出波形光滑无毛刺。
E.配合PLC电气控制系统的脉冲放大器可使同步球隙具有20%以上的触发范围,保证触发的可靠性,控制方便可靠。
F.同步球隙的触发无极性效应,无须双边触发。
8.主电容器
A.主电容器采用高密度固体电容器,每台电容量为0.6±0.05μF,直流工作电压为±100kV,电容器固有电感小于0.2μH,重量轻,体积小,
B.电容器在正常工作状态和工作环境下凹凸变形小于1mm。
C.电容器为固体绝缘介质和外壳干式全绝缘封装,不存在漏油、变形等问题。
9.调波元件
A.波头、波尾电阻具有足够的热容量,可保证发生器长时间连续运行。
B.充电电阻具有足够的热容量,可保证发生器长时间连续运行。
C.波头、波尾电阻采用板形结构,使用康铜丝无感绕制而成,外部采用绝缘树脂真空浇铸,接头为弹簧压接式,易于安装。
D.波头、波尾电阻的连接头采用3mm不锈钢线切割制造。
E.共有1组半波头电阻、1组半波尾电阻用于雷电冲击,另有1组充电电阻和保护电阻。
10.控制、保护系统
采用PLC电气控制系统为冲击电压发生器主体部分提供各种控制,*冲击试验的各种控制
功能。PLC控制系统采用进口PLC器件,与设备主体的连接采用两芯光缆。
A.PLC全自动控制系统实现手动控制。软件包可以与测量和波形分析用的峰值电压表、示波器等配合使用,实现冲击电压试验系统计算机测控一体化。
B.控制系统具备以下控制功能:
1.控制功能具有手动控制,各层次功能相对独立,确保系统的可靠性。
2.采用可控硅调压方式,具有充电电压反馈测量系统。
3.点火球隙可手动,并在控制面板上显示。
4.采用函数控制恒流充电方式,充电电压的稳定度可达到0.5%。
5.液晶面板可指示冲击发生器的充电电压,精度为1%。
6. 具有充电异常保护功能,手动发出触发点火脉冲
7.设备主体及充电部分接地和接地解除控制。
8.手动控制充电电压的充电过程
9.手动响警铃报警
10.具有过电流和过电压自动保护
C.同步球隙*级采用三电极球隙触发,触发范围大于20%。
D.安全接地系统
E.采用电磁铁自动接地机构通过一个接地电阻将发生器的*级电容接地。
F.接地操作与充电控制具有连锁保护,确保操作安全正常。
11.主要配置的设备
A.整流充电电源(与冲击本体一体化)
型 号:HDLGR-100/100
额定电压:Un = 100kV DC (正或负极性)
额定电流:In = 100mA (额定电压下)
电压控制:可控硅模块调压,调压范围0~ Un
极性转换:手动变换高压硅堆的方向
输入电压:220V 单相电压
电源频率:50/60 Hz
电源消耗:约5kVA
B.弱阻尼电容分压器
型 号:HDCR-900kV/500pF
额定电压:900kV
额定电容:500pF
电容节数:2节,每节电容:1000pF(375-1200脉冲电容器)
方波响应:部分响应时间小于100ns,过冲小于10%
分压比:约500,分压比不确定度:小于1%
C.测量设备
型 号:HDIMS-1000数字化冲击测量系统
幅值测量:HZ(IPM)23型冲击峰值电压表
输入范围:150V ~ 1600V(冲击电压)
测量不确定度:小于1%
波形测量:TDS1012C-SC数字示波器,采样率1.0GS/s,带宽大于100MHz,分辨率8bit,记录长度2.5k字节(可满足冲击试验要求),2通道
波形分析:工业控制计算机工作站(采用15寸液晶显示屏)
冲击测量软件包:冲击波形参数计算及显示,波形比较功能,波形的放大、缩小及平移,波形的存储及调用,波形的成图及报告编写
附 件:高性能100倍衰减器1支
隔离滤波屏蔽设
更多产品咨询请访问武汉华顶电力设备有限公司
每个运算放大器芯片的正负电源和地线间都配有去耦电容。互感器所用PCB板均为双面板,尽量采用井字形网状布线结构,板的一面横向布线,另一面纵向布线,交叉处用过孔相连。避免信号线与地线及电源线的交叉。在信号线之间设置一根接地的印制线。没有出现印制导线的不连续性,导线的拐角大于90度。
正常工作时,运算放大器同、反相输入端之间的电位差不会超过几毫伏,所以二极管D1和D2不导通。当过电压沿输入线侵入时,TVS快速钳位,将输入电压限幅,然后D1和D2导通,将运放输入端的电压限幅在其导通电压±0。7V左右,保护电路输入端不受过电压危害。破坏性的过电压有时也可能通过运算放大器的输出端侵入电路,因此电路输出端也应进行保护,保护电路和输入端保护相同。
屏蔽即是用屏蔽体将需要屏蔽的器件或设备包围起来,经过屏蔽体的电磁场被反射和吸收而衰减,对被屏蔽器件或设备的影响减小到允许水平以下。屏蔽按其作用机理可以分为三类:电场屏蔽、磁场屏蔽和电磁屏蔽。电场屏蔽主要用于消除容性耦合,磁场屏蔽主要用于抑制感性耦合,电磁屏蔽主要用来防止高频电磁场的影响,如果屏蔽接地,则还可以起到静电屏蔽的作用。
- 低压侧电子设备的屏蔽
低压侧的电子设备布置在采用良好导磁材料制成的机箱中,箱体能提供一定程度的屏蔽。但由于电缆的接入使箱体变得不连续,阻断了涡流的通路,屏蔽效果降低,因此尽量避免或减小屏蔽体的开缝,为取得良好的屏蔽效果,在开缝处用螺丝接合件、接地衬垫或导电圈使整个开缝长度有可靠的电接触。为了提高系统的静电防护能力,在机箱外表面涂附绝缘漆,电路板和机壳之间留有足够距离以免缝隙过窄而形成静电放电。
- 信号线的屏蔽
本文所设计的互感器输出为模拟信号,对于PT、CT的信号传输线均采用屏蔽双绞线。屏蔽电缆是在绝缘导线外面再包一层金属薄膜或金属编织网,即屏蔽层。采用屏蔽电缆对削弱静电耦合和电磁耦合都有明显的效果扰源对敏感电路的单芯屏蔽线扰源导线与单芯屏蔽线屏蔽层间的耦合电容,以及屏蔽层与芯线间的耦合电容实现的。
互感器低压侧电子电路的工作电源由交流电网(220V/50Hz)提供,电网中存在各种信号,有两种来源:一为雷电冲击或切合大容量感性负载造成电源瞬间欠压、过载,产生的尖峰、浪涌干扰等;二为电网中的谐波高频干扰。这些干扰会通过电源线传入电子线路,干扰电路的正常工作。一般说来,系统故障有1/3~1/2来自于电源。为了考核电子设备对电源干扰的抵抗能力,电磁兼容试验项目中针对低压侧工作电源进行的主要有:射频场感应的传导抗扰度试验、低压电网电压暂降、短时中断和电压变化抗扰度试验、浪涌(冲击)抗扰度试验和电快速瞬变脉冲群抗扰度试验。
互感器低压侧电子线路采用开关电源供电,因为开关电源的输出带有一定纹波,对电子线路造成高频干扰,所以电源抗干扰设计非常重要。采取的措施有装设输入滤波电路、输出滤波电路,在输入端还装设有压敏电阻。
电压互感器和电流互感器是电力系统中的基础设备之一,其准确度及可靠性与电力系统的安全、可靠、经济运行密切相关。多年以来,在中低压等级的电网中广泛使用电磁式电力互感器进行计量和保护。电磁式互感器受其传感机理的限制,存在着自身难以长春市雷电冲击电压发生器厂家供应长春市雷电冲击电压发生器厂家供应克服的缺点,同时难以适应电力系统向数字化、智能化发展的趋势。
以微处理器为基础的数字保护装置、电网运行监视与控制系统的发展推动了对新型互感器的研制进程。在新一代互感器中,用于中低压等级的电子式互感器,采用电阻分压器和Rogowski线圈实现对电压电流的测量,这种电子式电压、电流互感器,结构紧凑、线性范围大、通频带宽、抗电磁干扰能力强、与现代数字测量系统和微机继保装置兼容性好,输出不需要有很大的功率。