(1)输出电抗器,当变频器输出到电机的电缆长度大于产品规定值时,应加输出电抗器来补偿电机长电缆运行时的耦合电容的充放电影响,避免变频器过流。输出电抗器有两种类型,一种输出电抗器是铁芯式电抗器,当变频器的载波频率小于3khz时采用。另一种输出电抗器是铁氧体式,当变频器的载波频率小于6khz时采用。
(2)输出dv/dt电抗器,输出dv/dt电抗器是为了限制变频器输出电压的上升率,削减输出谐波分量,防止过压保护电缆,减小电机噪声,来确保电机的绝缘正常。
(3)正弦波滤波器,随着变频器输出距离的问题的不断研究,各厂商推出了用于变频器的输出滤波器。正弦波滤波器是用在变频器输出端,它可以改善变频器输出波形,使变频器的输出电压和电流近似于正弦波,减少电机谐波畴变系数和电机绝缘压力。与输出电抗器、dv/dt滤波器相比较,正弦波滤波器末端有一级电容滤波电路,使变频器输出波形接近正弦波。下面介绍这种全新滤波技术,与传统滤波器的布局技术相比,新的正弦滤波器可同时实现三个功能:把相位对相位电压转变为正弦信号、抑制共模电流和把导体到地电压变成正弦波电压。变频装置的节能效果十分明显,在大功率电机中采用变频调速电机,整个发电机组可节电30%。并且使用变频调速后,实现了电机的软启动,使电机工作平稳,电机轴承磨损减小,延长了电机使用寿命和维护周期。因此,变频调速技术在石油、冶金、发电、铁路、矿山等工业方面得到了广泛的使用。1.电缆对称性设计对于1.8/3KW及以下变频电机电缆,和对称3+1芯和4芯电缆仅可用于主电源的输入缆,但使用对称结构电缆。
ZR-BPGVFPP2、ZR-BPGVFP3 、ZR-BPYJVPP、ZR-BPVVPP、ZR-BPFFP、ZR-BPFFP2、ZR-BPFFPP2、ZR-BPFFP3、ZR-BPVVP、ZR-BPVVP2、ZR-BPVVPP2、、ZR-BPYJVP、ZR-BPYJVP2、ZR-BPYJVPP2、ZR-BPYJVP3 ..NH-BPGGP、NH-BPGGP2、NH-BPGGPP2、NH-BPGGP3、NH-BPGVFP、NH-BPGVFP2、
文库变频器主要用于交流电动机转速调节,由于变频器的自身输出特性和电缆分布电容的耦合作用,限制了变频器的输出距离。
2 原因分析
变频器的输出到电机的电缆长度受到很多因素的影响,这其中的原因主要有以下几点:
(1)分布电容。所谓分布电容,就是指由非电容形态形成的一种分布参数。一般是指在印制板或其他形态的电路形式,在线与线之间、印制板的上下层之间形成的电容。而变频器输出距离受限的问题,和电缆的分布电容有密切关系,不只是电容器才有电容,实际上任何两个绝缘导体之间都存在电容。例如导线之间,导线与大地之间,都是被绝缘层和空气介质隔开的,所以都存在着电容。 通常情况下,这个电容值很小(一般在15~30nf/100m左右),电缆长度较短时,它的实际影响可以忽略不计,如果电缆很长或传输信号频率很高时,就必须考虑分布电容的作用。在电缆远距离敷设系统中,电缆的电容会表现的较为明显,对控制回路产生一定的影响,甚至影响控制功能,特别是对于变频器控制普通低压电机的控制回路,故障较多表现为过流、起停失灵等现象,给生产和维护造成很大的安全隐患。由于输出线上的分布电容和分布电感的共振产生浪涌电压,将会叠加到输出电压上,晶体管、igbt的开关频率越高,电缆越长,产生的浪涌电压越高,高时,可产生直流电压的两倍的浪涌电压。这种情况下,很容易引起过压过流保护,甚至烧坏模块。变频器与变频电机问电缆均需采用对称电缆结构,对称电缆结构有3芯和3+3芯两种,3+3芯电缆结构是将三大一小四芯绝缘线芯中第四芯(中性线芯)分解为三个截面较小的绝缘线芯,把三大三小线芯对称成缆,对于6/10kV变频电机电缆,该电缆结构与6/10kV普通电力电缆有所不同,普通电力电缆是将三根绝缘线芯采用铜带屏蔽后成缆,而变频电机电缆是由铜丝铜带屏蔽后挤包分相护套,然后对称成缆,对称电缆结构由于导线的互换性,有更好的电磁相容性,对抑制电磁干扰起到一定的作用,能抵消高次谐彼中的奇次频率,提高变频电机电缆的抗干扰性,减少了整个系统中的电磁辐射。