微动力地埋式医疗污水处理设备
设备运行稳定:本系统设备均采用PLC控制,减少人为干预因素。使设备故障率降到低,保障生产设备的连续运行。
监测点布置合理:针对含氰废水特点,设两级PH检测仪器。含铬废水设置ORP电位仪。各个水池设置液位反馈仪器等。做到quan方位、全流程监测。
运行费用低:吨水处理费用为:5.50-6.00元,远远低于目前主流处理工艺的费用。
操作简单:本设备采用集成化控制系统,避免异地操作的发生,操作简便易行。
厌氧颗粒污泥体型规则呈球形,VSS/TSS≥0.7,沉降速度50-150m/h,粒径0.5-2mm,颗粒度大于90%,zui大比产甲烷速率≥400mlCH4/(gVSS˙d)。作为接种污泥可用于淀粉、淀粉糖、柠檬酸、酒精、啤酒、造纸、蛋白、食品、味精等行业的污水处理系统中高负荷厌氧反应器(IC、EGSB、UASB等)的启动运行。
(一)培养颗粒污泥需考虑的因素
1、基质
培养颗粒污泥首先对基质有一定的要求,一般的,在培养颗粒污泥的基质中COD:N:P=110~200:5:1。而有机废液的基质可分为偏碳水化合物类和偏蛋白质类。为了能顺利培养出颗粒污泥,对于偏碳水化合物类的污水需要添加N和P。而对于偏蛋白质类的污水需要添加碳源(如葡萄糖等)。
2、温度
废水中的厌氧处理主要依靠微生物的生命活动来达到处理的目的,不同微生物的生长需要不同的温度范围。温度稍有差别,就可在两类主要种群之间造成不平衡。因此,温度对颗粒污泥的培养很重要。颗粒污泥在低温(15~25℃)、中温(30~40℃)和高温(50~60℃)都有过成功的经验。一般的,高温较中温的培养时间短,但由于高温下NH3与某些化合物混合毒性会增加,因而导致其应用上受一定的限制;中温一般控制在35℃左右,在其它条件适当的情况下,经1~3个月可成功的培养出颗粒污泥;低温下培养颗粒污泥的研究较少,但有文献报道在使用颗粒污泥低温驯化后处理底浓度制药废水的实验中,COD的去处率达90%,取得了较好的效果。
3、pH值
反应器内pH值范围应控制在产甲烷菌zui适的范围内(6.8-7.2)。由于不同性质的废水有不同的pH值,为了保证反应器内pH值的稳定,防止酸积累而产生的对产甲烷菌的抑制,可采用向废水中添加化学药品如NaHCO3、Na2CO3、Ca(OH)2等物质。
(二)影响颗粒污泥形成因素
1、碱度
一般认为,进水水质中碱度通常应在1000mg/L(以CaCO3计)左右,而对于以碳水化合物为主的废水,进水碱度:COD >1:3是必要的。有学者研究表明,在颗粒污泥培养初期,控制出水碱度在1000mg/L(以CaCO3计)以上能成功培养出颗粒污泥。在颗粒污泥成熟后,对进水的碱度要求并不高。这对降低处理成本具有积极意义。
2、微量元素及惰性颗粒
微量元素对微生物良好的生长也有重要作用。其中Fe,Co,Ni,Zn等对提高污泥活性,促进颗粒污泥形成是有益的。
此外,惰性颗粒作为菌体附着的核,对颗粒化起着积极的作用。另外,有研究表明,投加活性炭可大大缩短污泥颗粒化的时间;在投加活性炭后颗粒污泥的粒径大,并使反应器运行更加稳定。
3、SO42-
关于SO42-对颗粒污泥的形成目前尚在讨论中。据Sam-Soon的胞外多聚物假说,局部氢的高分压是诱导微生物产生胞外多聚物从而与细菌表面之间的相互作用,通过带电基团的静电吸引及物理接触等架桥作用,构成一种包含多种组分的生物絮体,从而形成颗粒污泥的必要条件,而有硫酸盐存在时,由于硫酸盐还原菌对氢的快速利用,使反应器无法建立高的氢分压,从而不利于形成颗粒污泥。但有些国内外外学者发现处理含高硫酸盐废水时,会有非常薄的丝状体产生,它可作为产甲烷丝菌附着的原始核,从此开始颗粒的形成;硫酸盐还原产生的硫hua物与一些金属离子结合形成不溶性颗粒,可能成为颗粒污泥生长的二次核。
4、接种污泥及接种量
一般来说,对接种污泥无特殊要求,但接种污泥的不同对形成颗粒污泥的快慢有直接影响。因此,保证污泥的沉降性能好、厌氧微生物种类丰富、活性高,对加快颗粒污泥的形成是十分有利的。
对接种污泥的量,有学者研究认为,厌氧污泥接种量为11.5kgVSS/m3(按反应区容积计算)左右时,对于迅速培养出厌氧颗粒污泥是合适的。
5、启动方式
采用低浓度进水,结合逐步提高水力负荷的启动方式有利于污泥颗粒化。这是因为低浓度进水可以有效避免抑制性生hua物质的过度积累,同时较高的水力负荷可加强水力筛分作用。工业节能技术与应用微动力地埋式医疗污水处理设备典型案例:流程工业节能改造技术
流程工业是指通过物理变化和化学变化进行的生产过程,包括石油和化工、冶金等典型行业。流程工业在生产过程中需消耗大量的能源资源,以石油和化工行业为例,该行业是我国重要的能源和基础原材料行业,同时也是原油、煤炭等*资源的重要消耗领域。据行业协会,2018年石油和化工行业能源消费总量约5.75亿吨标准煤,位居工业部门第二。合成氨、甲醇、乙烯等重点产品平均能效水平与*水平相比,存在10%~30%的差距,仍具一定节能空间。加快推进流程工业节能技术研发应用,鼓励企业采用*的节能技术和装备,提高企业能源利用效率,意义重大。
2019年,在流程工业节能领域遴选出了20项技术,相关技术在石化、建材、冶金等行业推广前景较好,技术适用范围较广,如反重力工业冷却水系统综合节能技术、带分级燃烧的高效低阻预热器系统技术等。
反重力工业冷却水系统综合节能技术,采用富余扬程释放技术、真空负压回收技术、系统流量匹配技术、冷却塔势能回收技术、功率因素提高技术,以安全高效生产为主线,进行系统能量利用效率优化提升,使冷却水系统运行过程与能量利用结合,实现对管网进行实时数据釆集并进行大数据分析及负荷变化自动跟踪,改善末端供水不足问题。该技术适用于工业冷却水节能技术改造,已进行产业化应用,在江苏天音化工股份有限公司应用案例中,安装WISDOM管理平台实现自动化控制,系统运行稳定,年节电量约37万kW·h,折合标准煤126吨。预计未来5年,该技术推广应用比例可达到20%,可形成年节能6.8万吨标准煤,年减排二氧化碳 18.36万吨。