濮阳市眼科医院污水处理设备技术专业
濮阳市眼科医院污水处理设备技术专业
影响微生物活性的因素
在污水生化处理过程中,影响微生物活性的因素可分为基质类和环境类两大类。
基质类影响
包括营养物质,如以碳元素为主的有机化合物即碳源物质、氮源、磷源等营养物质、以及铁、锌、锰等微量元素;另外,还包括一些有毒有害化学物质如酚类、苯类等化合物、也包括一些重金属离子如铜、镉、铅离子等。
环境类影响
温度
温度对微生物的影响是很广泛的,尽管在高温环境(50℃~70℃)和低温环境(-5~0℃)中也活跃着某些类的细菌,但污水处理中绝大部分微生物***适宜生长的温度范围是20-30℃。在适宜的温度范围内,微生物的生理活动旺盛,其活性随温度的增高而增强,处理效果也越好。超出此范围,微生物的活性变差,生物反应过程就会受影响。一般的,控制反应进程的高和低限值分别为35℃和10℃。
pH值
活性污泥系统微生物***适宜的PH值范围是6.5-8.5,酸性或碱性过强的环境均不利于微生物的生存和生长,严重时会使污泥絮体遭到破坏,菌胶团解体,处理效果急剧恶化。
溶解氧
对好氧生物反应来说,保持混合液中一定浓度的溶解氧至关重要。当环境中的溶解氧高于0.3mg/l时,兼性菌和好氧菌都进行好氧呼吸;当溶解氧低于0.2-0.3mg/l接近于零时,兼性菌则转入厌氧呼吸,绝大部分好氧菌基本停止呼吸,而有部分好氧菌(多数为丝状菌)还可能生长良好,在系统中占据优势后常导致污泥膨胀。一般的,曝气池出口处的溶解氧以保持2mg/L左右为宜,过高则增加能耗,经济上不合算
电渗析的脱盐原理是什么?
电渗析装置中的阴阳离子交换膜具有选择透过性,当溶液中的离子在电场作用下发生定向移动时,利用阴阳离子交换膜的选择透过性而透过或不透过相应的交换膜在不同的水室中形成了浓水或淡水。
电渗析浓、淡、极水分部比例大致为多少?
电渗析装置中的浓水、淡水、极水的分布比例大致为 4:4:2,因此在电渗析除盐系统中节约极水的措施是非常有意义的;常用节约极水的措施有部分浓水充当极水后进行排放或采用极水循环;极水循环系统具体方式是软化水或脱盐水+NaCL 溶液充当极水循环。
浓水循环频繁自动倒极系统是如何实现的?意义是什么?
在当前的水处理行业中,浓水循环频繁自动倒极系统是以可编程控制器为控制核心,以系统产水工艺运行时间为控制函数,利用电动或气动直通阀门、三通阀门来定时切换浓淡水的水流方向,使淡水始终流入产水箱,而浓水固定排入浓水循环箱。在水资源日益匮乏的今天,浓水循环频繁自动倒极系统具有深远的意义,***该系统的水回收率较高可达到80%(视进水水质而定),在一些大型的水处理系统中节水的效果非常明显。第二该系统的造价比较低,对系统进水水质的要求比较低,容易推广(在一些对回收率要求较高而又不能够投入较多资金的企业或厂矿的水处理项目中比较有竞争力)。
生物膜净化污水的机理
生物膜的构造特征
生物膜(好氧层+兼氧层+厌氧层)+附着水层(高亲水性)。
降解有机物的机理
微生物:沿水流方向为细菌——原生动物――后生动物的食物链或生态系统。具体生物以菌胶团为主、辅以球衣菌、藻类等,含有大量固着型纤毛虫(钟虫、等枝虫、独缩虫等)和游泳型纤毛虫(楯纤虫、豆形虫、斜管虫等),它们起到了污染物净化和清除池内生物(防堵塞)作用。
污染物:重→轻(相当多污带→α中污带→β中污带→寡污带)。
供氧:借助流动水层厚薄变化以及气水逆向流动,向生物膜表面供氧。
传质与降解:有机物降解主要是在好氧层进行,部分难降解有机物经兼氧层和厌氧层分解,分解后产生的H2S,NH3等以及代谢产物由内向外传递而进入空气中,好氧层形成的NO3--N、NO2--N等经厌氧层发生反硝化,产生的N2也向外而散入大气中。
生物膜更新:经水力冲刷,使膜表面不断更新(DO及污染物),维持生物活性(老化膜固着不紧)。
3.1 MBBR反应器的流化态
反应器中的填料依靠曝气和水流的提升作用处于流化状态,在实际操作中,经常出现由于整个池内进气分布不均匀而导致局部填料堆积的现象。因此需通过池型作水力特性计算来改进进气管路的布置和优化池内曝气头的分布,再根据实际的曝气情况调节各曝气头上紧固橡皮垫的螺母松紧程度,调节单个曝气头的曝气量。除保证池内出水端具有较大曝气量,以便使整个池内填料呈均匀流化状态外,还可以采用穿孔曝气管,便于使池四边和四角进气分布均匀。反应器的构造在很大程度上决定了它的水力特性。试验表明,反应器的长深比为0.5左右时有利于填料*移动,或者通过导流板的强制循环来解决池内死角的问题,这样能使气水比降到4:1左右。在实际工程设计时应通过大量试验来优化反应器的构造和水力特性,降低能耗,进一步提高MBBR的经济效益。
离心式污泥脱水机设备处理能力的控制
任何离心式污泥脱水机都有一个处理能力要求,这种要求有两方面的数据参考指导:
A、可处理干固体负荷,即每小时处理的不挥发固体固体重量,以KGDS(干固体)/h表示;
B、可处理水力负荷,即进入设备的污泥流量,以m3/h表示,它与进泥浓度(固含量)的乘积即为干固体负荷。
在正常污泥浓度情况下,应保证处理干固体负荷在设备厂商标定的设备理论负荷的70%-90%为好,要避免设备利用率过低,同时避免设备*在高负荷下运转而造成设备损耗加快,维护周期缩短。在设备负荷过大的情况下,无论如何增加絮凝剂用量,也不会使处理效果好转,表现为泥饼干度不理想,上清液携带固体偏高、回收率下降,由于上清液携带的泥沙溢流造成设备磨损,动平衡破坏、震动加剧。有些时候,由于污泥浓度增加,造成按照原流量进泥时,实际进泥负荷超过了该设备的可接纳负荷指标使处理效果下降。这时要及时逐渐降低进泥频率,观察效果,待效果稳定后,继续尝试絮凝剂流量控制到***经济投加量。反之,当污泥浓度降低了,要逐渐增加进泥流量,同期配合加药泵流量调整。若进泥浓度过低,虽然设备的干固体负荷不高,但水力负荷却很大,进入的低浓度污泥由于在高水力负荷下,设备不能形成有效的、厚度均匀的泥环层,沉降的固体会被大量的上清液携带溢流,从而直接影响了处理效果和处理效率。故对于低浓度的污泥,如二沉池未浓缩污泥经过浓缩处理(如浓缩机浓缩后处理),或者与高浓度污泥(如一沉池污泥)混合后进行脱水处理。要避免由于进泥负荷过大而导致扭矩过大造成离心机过载,就要适当降低进泥泵频率,这种情况主要发生在进泥浓度增加,却仍然以原进泥流量操作的状况。