快速发布求购 登录 注册
行业资讯行业财报市场标准研发新品会议盘点政策本站速递
摘要长期以来,赋予机器人自主装配能力,一直是科研人员的目标。虽然组装任务对于人类来说可能较为简单,但对于机器人来说,却充满了挑战。

  【仪表网 研发快讯】长期以来,赋予机器人自主装配能力,一直是科研人员的目标。虽然组装任务对于人类来说可能较为简单,但对于机器人来说,却充满了挑战。一方面,实现这一目标不仅需要巨大的工程投入,更需要在理论上作出重大突破。另一方面,即便是人类在进行组装时,也难免犯错——可能会错误地安装某个部件。但人类具备的独特能力在于能够在后续的过程中发现并纠正这些错误。
 
  然而,现有的机器人组装研究多聚焦于期望机器人一次性完成整个组装过程,忽视了错误识别与纠正这一关键环节。事实上,随着组装任务的推进,现有的方法可能会导致错误逐渐积累,从而使后续步骤逐渐偏离预定目标,甚至最终导致整个组装过程的中断。图1展示了这一错误积累的过程。
 
图1 组装错误积累示意图
 
  为了解决这一挑战,北京大学计算机学院董豪团队提出了一个新的研究任务——单步组装纠错任务,并面临两个全新的挑战:首先,如何准确识别拼装错误的组件;其次,如何纠正这些错误,确保组件恢复到正确位置。为了解决这两个问题,团队构建了一个全新的数据集——LEGO-ECA,并提出了自纠错组装网络(SCANet),旨在帮助机器人在组装过程中及时发现并修正错误。
 
  LEGO-ECA数据集是首个包含失败样例的组件组装数据集,来源于基于MEPNet合成的LEGO数据集。在构建过程中,研究团队从1429个组装手册中随机挑选,将其输入组装网络MEPNet,并通过加入高斯噪声干扰组装过程,成功生成了丰富的错误组装样本。最终,LEGO-ECA数据集包含约12万种不同的错误样例,成为机器人组装任务中不可或缺的重要资源。
 
图2 LEGO-ECA数据集
 
  为了让机器人具备自我纠错的能力,团队在设计网络时提出了一个创新的思路:将已组装的组件视为查询对象,结合组装手册与组装结果的差异,帮助机器人识别并纠正错误。基于这一思路构建的自纠错网络,机器人能够在组装过程中识别并纠正错误组件,从而显著提升组装的准确性。
 
图3 自纠错组装网络结构示意图
 
  实验结果表明,与现有的组装神经网络相比,SCANet在降低组装错误率和优化组装结果方面表现出了显著的优势,显著提升了机器人自主装配的准确性和稳定性。从下图可以看出,随着组装步骤的逐步增加,SCANet与MEPNet之间的差距越来越明显。这是因为在缺乏纠错机制的情况下,MEPNet的错误会随着每一步的执行而不断积累,最终导致其与正确组装路线之间的差距越来越大。
 
图4 组装结果对比

我要评论
文明上网,理性发言。(您还可以输入200个字符)

所有评论仅代表网友意见,与本站立场无关。

版权与免责声明
  • 凡本网注明"来源:仪表网"的所有作品,版权均属于仪表网,未经本网授权不得转载、摘编或利用其它方式使用上述作品。已经本网授权使用作品的,应在授权范围内使用,并注明"来源:仪表网"。违反上述声明者,本网将追究其相关法律责任。
  • 本网转载并注明自其它来源的作品,目的在于传递更多信息,并不代表本网赞同其观点或证实其内容的真实性,不承担此类作品侵权行为的直接责任及连带责任。其他媒体、网站或个人从本网转载时,必须保留本网注明的作品来源,并自负版权等法律责任。
  • 如涉及作品内容、版权等问题,请在作品发表之日起一周内与本网联系,否则视为放弃相关权利。
  • 合作、投稿、转载授权等相关事宜,请联系本网。联系电话:0571-87759945,QQ:1103027433。
广告招商
今日换一换
新发产品更多+

客服热线:0571-87759942

采购热线:0571-87759942

媒体合作:0571-87759945

  • 仪表站APP
  • 微信公众号
  • 仪表网小程序
  • 仪表网抖音号
Copyright ybzhan.cn    All Rights Reserved   法律顾问:浙江天册律师事务所 贾熙明律师   仪表网-仪器仪表行业“互联网+”服务平台
意见反馈
我知道了