快速发布求购 登录 注册
行业资讯行业财报市场标准研发新品会议盘点政策本站速递

科学岛团队在超细纳米颗粒耦合CoFe-LDH纳米线助力析氧反应研究方面取得新进展

研发快讯 2024年02月02日 11:35:07来源:合肥物质科学研究院 作者:王睿琦 12268
摘要电化学水分解作为产生清洁氢能最有前景的技术之一,非常有利于推动“双碳”目标的达成。然而,析氧反应(OER)作为水分解的关键阳极反应,由于存在复杂的电子转移步骤,常常表现为反应动力学缓慢。

  【仪表网 研发快讯】近日,中国科学院合肥物质院等离子体所王奇团队采用简单的水热法与快速电沉积相结合成功地合成了一种异质结构的Ce@CoFe-LDH电催化剂,相关结果发表在Inorganic Chemistry Frontiers上。
 
  电化学水分解作为产生清洁氢能最有前景的技术之一,非常有利于推动“双碳”目标的达成。然而,析氧反应(OER)作为水分解的关键阳极反应,由于存在复杂的电子转移步骤,常常表现为反应动力学缓慢。目前,贵金属Ru或Ir基纳米材料被认为是OER最有效的电催化剂。但是,Ru或Ir基电催化剂的稀缺性和稳定性不足严重阻碍了电化学水分解的大规模应用。因此,开发基于过渡金属元素的高效稳定的OER电催化剂至关重要。
 
  低浓度的Ce离子和快速的电沉积可以确保在CoFe-LDH纳米线表面形成均匀超细的Ce(OH)3纳米颗粒,从而产生丰富稳定的活性界面。XPS结果证明了超细Ce(OH)3纳米颗粒和CoFe-LDH纳米线之间存在电子转移,进而优化了CoFe-LDH表面电子结构。因此,Ce@CoFe-LDH对OER展现出优异的活性和稳定性。密度泛函理论(DFT)计算表明,电子转移可以促进电荷的重新分布,从而改变费米能级附近的态密度,以确保更好的导电性。此外,界面工程也降低了决速步骤(RDS)的反应能垒,这有利于催化活性和稳定性的提升。同时,Ce@CoFe-LDH作为水分解的阳极性能也远优于商用RuO2阳极,这十分有利于推动电催化水分解技术的商业化进程。
 
  以上工作得到了国家重点研发计划、安徽省自然科学基金等项目的支持。
 
图1:电催化剂的制备和表征
 
图2:电催化剂析氧反应的活性
 
图3:电催化剂析氧反应的稳定性

延伸阅读
我要评论
文明上网,理性发言。(您还可以输入200个字符)

所有评论仅代表网友意见,与本站立场无关。

版权与免责声明
  • 凡本网注明"来源:仪表网"的所有作品,版权均属于仪表网,未经本网授权不得转载、摘编或利用其它方式使用上述作品。已经本网授权使用作品的,应在授权范围内使用,并注明"来源:仪表网"。违反上述声明者,本网将追究其相关法律责任。
  • 本网转载并注明自其它来源的作品,目的在于传递更多信息,并不代表本网赞同其观点或证实其内容的真实性,不承担此类作品侵权行为的直接责任及连带责任。其他媒体、网站或个人从本网转载时,必须保留本网注明的作品来源,并自负版权等法律责任。
  • 如涉及作品内容、版权等问题,请在作品发表之日起一周内与本网联系,否则视为放弃相关权利。
  • 合作、投稿、转载授权等相关事宜,请联系本网。联系电话:0571-87759945,QQ:1103027433。
广告招商
今日换一换
新发产品更多+

客服热线:0571-87759942

采购热线:0571-87759942

媒体合作:0571-87759945

  • 仪表站APP
  • 微信公众号
  • 仪表网小程序
  • 仪表网抖音号
Copyright ybzhan.cn    All Rights Reserved   法律顾问:浙江天册律师事务所 贾熙明律师   仪表网-仪器仪表行业“互联网+”服务平台
意见反馈
我知道了