上海徐吉电气有限公司
中级会员 | 第17年

13818304481

高压开关机械特性测试仪
智能化开关特性测试仪
石墨触头开关特性测试仪
智能化高压开关机械特性测试仪
开关机械特性测试仪
断路器机械特性测试仪
高压开关时间特性测试仪
高压开关综合测试仪
高压开关测试仪
智能开关测试仪
真空开关动特性测试仪
高压开关动作特性测试仪
断路器特性测试仪
开关动特性测试仪
真空开关机械特性测试仪
高压机械特性测试仪
高压断路器机械特性测试仪
高压开关动特性测试仪
高压开关特性测试仪
高压开关综合特性测试仪
断路器测试仪
开关触指压力测试仪
断路器合闸电阻测试仪
开关特性测试仪
高压开关操作电源
高压试验变压器
油浸式试验变压器 干式试验变压器 充气式试验变压器 油浸高压试验变压器 干式高压试验变压器 充气式高压试验变压器 超轻型试验变压器 超高压耐压测试仪 试验变压器控制台 试验变压器控制箱 工频耐压试验机 智能型等电位测试仪 绝缘靴手套耐压试验装置 高压无线核相仪 数字双钳相位伏安表 便携式动平衡测量仪 六相微机继电保护测试仪 电缆故障测试管理仪 变频串联谐振试验装置 直流/计数显示电位差 手动环形调压器 绝缘油介电强度测试仪 SF6气体检漏仪 自动开口闪点仪 电工仪器仪表 升流器 钳形接地电阻测试仪 绝缘电阻测试仪 CT伏安特性测试仪 变压器直流电阻测试仪 三相电容电感测试仪 变压器特性综合测试台 氧化锌避雷器测试仪
无局放试验变压器
高压试验检测设备
放电棒 变压器变比组别测试仪 变比组别测试仪 变压器直流电阻快速测试仪 直流电阻快速测试仪 变压器绕组变频测试仪 智能化介质损耗测试仪 全自动互感器综合测试仪 大电流发生器 升流器 直流高压发生器 轻型交直流高压试验变压器 继电器综合试验装置 继电保护试验箱 微电脑继电保护校验仪 六相微机继电保护测试仪 微机继电保护测试仪 变频串联谐振试验变压器 超轻型试验变压器 串激式试验变压器 油浸试验变压器 油浸式试验变压器 无局放试验变压器 干式试验变压器 充气试验变压器 工频耐压试验仪 充气式试验变压器 交直流高压试验变压器 高压试验变压器 试验变压器 HDJB-1200微机型继电保护校验仪 回路电阻测试仪 SF6在线监测报警系统 SF6回收净化充气装置 变比测试仪 三倍频发生器 三相移相器 电力变压器绕组测试仪 匝间绝缘冲击耐压试验仪 超低频高压发生器 直流系统接地故障测试仪 程控工频耐压试验装置 继电器校验仪 水内冷发电机绝缘电阻测试仪 ST3008变压器容量特性测试仪 高压测试仪 电力安全工器具力学性能试验机 全自动变比组别测试仪 蓄电池负载测试仪 接地电阻测试仪 智能电能表校验仪 智能用电稽查仪 电能质量分析仪 直流系统接地故障分析仪 蓄电池检测测试仪 蓄电池在线监测仪 WN6800双钳多功能接地电阻测试仪 ZY5018电平振荡器 智能蓄电池内阻测试仪 HDGC3832直流系统接地故障查找仪 HDGC3510电能质量分析仪 三相多功能用电检查仪 JY6633微量水分测定仪 HL36电流互感器 T24-V直流伏特表 硅橡胶高压线 FDT-1005油介损测试仪 STR-BR变压器容量特性测试仪 YW2000J型微机继电保护测试仪 电能综合测试仪 CDZ8电动机运行参数测试仪 超声波线缆测高仪 太阳能光伏接线盒测试仪 SUTEZRC系列直流电阻测试仪 电机匝压试验仪 分流器 直流断路器安秒特性测试仪 直流试送仪
超低频高压发生器
防雷装置检测设备

直流输电技术发展

时间:2009/4/22阅读:2140
分享:

关键字:电力技术 直流输电 发展情况
 

  电力技术的发展是从直流电开始的,早期的直流输电是不需要经过换流的直流输电,即发电、输电和用电均为直流电。如1882年在德国建成的57km向慕尼黑展览会送电的直流输电线路(2kV,1.5kW);1889年在法国用直流发电机串联而得到高电压,从毛梯埃斯(Moutiers)到里昂(Lyon)的230km直流输电线路(125kV,20MW)等,均为此种类型。随着三相交流发电机,感应电动机和变压器的迅速发展,发电和用电领域很快被交流电所取代。同时变压器又可方便地改变交流电压,从而使交流输电和交流电网得到迅速的发展,并很快占据了统治地位。但在输电领域直流具有交流输电所不能取代之处,如远距离海底电缆或地下电缆输电,不同频率电网之间的联网或送电等。
   直流输电的发展与换流技术(特别是高电压、大功率换流设备)的发展有密切的关系。
   汞弧阀换流时期  1901年发明的汞弧整流管只能用于整流。1928年具有栅极控制能力的汞弧阀研制成功,它不但可用于整流,同时也解决了逆变问题。因此可以说大功率汞弧阀使直流输电成为现实。从1954年世界上*个工业性直流输电工程(哥特兰岛直流工程)在瑞典投入运行以后,到1977年Z后一个采用汞弧阀换流的直流输电工程(纳尔逊河1期工程)建成,世界上共有12项汞弧阀换流的直流工程投入运行,其中Z大的输送容量为1440MW(美国太平洋联络线1期工程),Z高输电电压为±450kV(纳尔逊河1期工程),Z长输电距离为1362km(太平洋联络线)。这一时期可以称为汞弧阀换流时期。由于汞弧阀制造技术复杂、价格昴贵、逆弧故障率高、可靠性较差、运行维护不便等因素,使直流输电的应用和发展受到限制。
    晶闸管阀换流时期  20世纪70年代以后,电力电子和微电子技术的迅速发展,高压大功率晶闸管的出现,晶闸管换流阀和计算机控制在直流输电工程中的应用,有效地改善了直流输电的运行性能和可靠性,促进了直流输电技术的发展。晶闸管换流阀没有逆弧故障,而且制造、试验、运行、维护和检修都比汞弧阀简单而方便。1970年瑞典首先在哥特兰岛直流输电工程原有的汞弧阀换流器上,扩建了直流电压为50kV,输送功率为10MW的晶闸管换流阀试验工程。1972年世界上*项全部采用晶闸管换流的伊尔河直流背靠背工程在加拿大投入运行。从此以后世界上新建的直流输电工程均采用晶闸管换流阀。与此同时,原来采用汞弧阀换流的直流工程也逐步被晶闸管换流阀所替代。从70年代起开始了直流输电技术的晶闸管换流时期。在此期间,微机控制和保护、光电控制、水冷技术、氧化锌避雷器等新技术在直流输电工程中也得到了广泛的应用。
    从1954年到1998年世界上已投入运行的直流输电工程有57项,其中架空线路15项,电缆线路10项,架空线和电缆混合线路9项,背靠背直流工程23项。考虑到正在建设的直流工程,目前已运行和正在建设的直流工程共66项,其中架空线路20项(占30.3%),电缆线路10项(占15.2%),架空线和电缆混合线路11项(占16.6%),背靠背直流工程25项(占37.9%)。这些工程的总输送容量为63674MW,其中架空线路单项工程的Z大容量为6000MW(已运行的为3150MW),Z高电压为±750kV(已运行的为±600kV),Z长输电距离为2414km(已运行的为1700km)。单项直流电缆工程的Z大容量为2800MW(已运行的为1000MW),Z高电压为±500kV(已运行的为450kV),Z长输电距离为670 km(已运行的为250 km)。单项背靠背工程Z大容量为1065MW。
    在这个时期直流输电在远距离大容量送电,电网互联和电缆送电(特别是海底电缆送电)等方面均发挥了重大的作用。直流工程输送容量的年平均增长率,在1960-1975年为460MW/年,1976-1980年为1500MW/年,1981-1998年为2096MW/年。
    新型半导体换流设备的应用  进入90年代以后,新型金属氧化物半导体器件-绝缘栅双极晶体管(IGBT)首先在工业驱动装置上得到广泛的应用。1997年3月世界上*个采用IGBT构成电压源换流器的直流输电工业性试验工程,在瑞典中部投入运行,其输送功率和电压为3MW和10kV,输送距离10km。由于这种换流器的功能强,体积小,可以减少换流站的滤波装置,省去换流变压器,简化换流站结构,而称之为轻型直流输电(HVDC Light)。采用IGBT的电压源换流器,具有关断电流的能力,可以应用脉宽调制(PWM)技术进行无源逆变,解决了用直流输电向无交流电源的负荷点送电的问题。在瑞典、澳大利亚和爱沙尼亚已有四项轻型直流输电工程与制造厂签订了合同,计划1999年和2000年建成。但IGBT损耗大,不利于大型直流工程的采用。今后集成门极换相晶闸管(IGCT)和碳化硅等新型半导体器件的开发,给直流输电技术的发展将创造更好的条件。

会员登录

×

请输入账号

请输入密码

=

请输验证码

收藏该商铺

X
该信息已收藏!
标签:
保存成功

(空格分隔,最多3个,单个标签最多10个字符)

常用:

提示

X
您的留言已提交成功!我们将在第一时间回复您~
在线留言