当前位置:潍坊鲁盛水处理设备有限公司>>污水处理一体化装置>> WSZ-A-5m3/h一体化污水处理设备
WSZ-A-5m3/h一体化污水处理设备
无动力农村生活污水处理装置 一体化设备现货、气浮机现货、二氧化氯发生器现货、加药装置现货,欢迎下单订购。
公司为客户送货上门、派技术安装、专业培训操作人员。
公司设备可买入地表以下,地表可作为绿化活广场用地;不占地表面积,不许盖房,更不需采暖保温;
与无机物的反应
二氧化氯可将水中溶解的还原态铁、锰氧化,对去除铁、锰很有效。反应式如下:
2ClO2+5Mn2+6H2O→5MnO2+2Cl-+12H+
ClO2+5Fe (HCO3)2+3H2O→5Fe (OH)3+10CO2+Cl+H+
作为氧化剂,二氧化氯氧化能力比过氧化氢强,而比臭氧弱,因此在水中与过氧化氢或臭氧共存时,会发生如下反应:
2ClO2+H2O2+2OH-→2ClO2-+2H2O+O2
ClO2+O3→ClO3+O2
从以上反应看,目前的复合型二氧化氯消毒剂发生器所产生的二氧化氯、过氧化氢、臭氧相互之间会消耗。如何避免这种消耗,提高其复合使用效果,值得进一步研究。
鲁盛公司融合了当地环保产业优势资源及国内、*的污水处理工艺,专业生产污水处理设备,服务于资源保护的科技进步
具有投资成本低、占地面积小、处理效率高等优势。
与有机物的反应
二氧化氯与水中有机物的反应比较复杂,主要发生氧化反应,与氯不同,它不会发生取代与加成反应。其中特别值得注意的是,二氧化氯与酚反应不会生成有味的氯酚,而是将其氧化。二氧化氯与腐植酸反应,不会生成三氯jia烷,主要生成苯多羧酸、二元脂肪酸、羧苯基二羟乙酸、一元脂肪酸四类氧化产物,它们的致突变性比较低。
二氧化氯的消毒作用
实验研究表明,二氧化氯对大肠杆菌、脊髓灰质炎病毒、甲肝病毒、兰伯氏贾第虫胞囊、jian刺贾第虫胞囊等均有很好的杀灭作用,效果优于自由氯。对消毒剂能力的评价,通常用达到一定杀灭率时所需的浓度与时间的乘积C·t为指标,C·t值越低,消毒效果越好。表1给出了4种常用消毒剂杀灭不同微生物的C·t值,浓度单位为mg/L,时间单位为min,杀灭率为99%。
对消毒的评价要综合考虑到杀生能力与水中的稳定性。对水处理常用的4种消毒剂(氯、二氧化氯、臭氧、氯胺)而言,从杀生能力看,臭氧>二氧化氯>氯>氯胺;从稳定性看,氯胺>二氧化氯>氯>臭氧。综合而言,二氧化氯是其中较好的一种消毒剂。
注:除括号注明的之外,所有C·t值都是在5℃、PH6~8时达99%杀灭率所需值。
与氯不同,二氧化氯的一个重要特点是在碱性PH条件下仍具有很好的杀菌能力。由于二氧化氯不会与氨反应,因此在高PH值的含氨的系统中可发挥*的杀菌作用。而且二氧化氯对藻类也具有很好的杀灭作用。
关于二氧化氯的杀菌机理,有很多解释。有人认为二氧化氯会附着在细胞壁上,然后穿过细胞壁与含疏基的酶反应而使细菌死亡。二氧化氯会很快地抑制蛋白质的合成,在与二氧化氯接触的几秒钟之后,细胞就不能将用C14标记的氨基酸合成为蛋白质。
WSZ-A-5m3/h一体化污水处理设备 二氧化氯在水处理中的应用
给水处理
控制污泥膨胀的方法和过程
污泥膨胀控制从2000年1月20日开始。由于膨胀的恶化及MLSS不断增长,此时两池的SV均已达到了90%以上。
首先为保证出水效果,在停止曝气*min向SBR池投加氢氧化钙(按1∶200的比例),通过其凝聚作用来提高污泥的压密性以改善污泥沉降性能。在接下来的滗水过程中,将水位滗至滗水器所能到达的zui低位(滗水深度为原来的3倍),这样在进水量不变的情况下,排出比由1∶4升至1∶2,使稀释倍数降低,提高了基质初始浓度。另外充分利用闲置期,将机动潜污泵投入SBR池中进行强制排泥(剩余污泥被排入闲置池中进行消化处理),同时疏通排泥管以确保每天的正常排泥。经过4个周期的运行,到22日泡沫现象虽未有明显改观,但各池SV均停止了增长。这说明对污泥膨胀原因的分析是正确的,采取的措施是可行的。
通过继续强制排泥使MLSS逐渐回落到3000mg/L左右,并缩短充水时间(由启动1台提升泵改为2台),进一步提高基质初始浓度,将曝气时间减至6.0h增大了浓度梯度,避免了曝气结束后污泥负荷过低而利于丝状菌生长。到1月24日(氢氧化钙停止投加),水面悬浮的黄褐色污泥已基本消失,SVI亦缓慢下降,出水COD降至120mg/L以下。镜检观察到丝状菌已明显衰减,由丛生状变为分散状,部分单枝已折断成散碎短枝。此时,泡沫量也开始减少,间或有水面露出。
此后每天仍稳定地排除剩余污泥(MLSS控制在3000mg/L左右)并保持其他措施不变。从24日开始SVI持续下降,泡沫也随时间的推移而衰减,到曝气后期主要集中在曝气头上方水面区域,由于粘带的污泥絮体减少其颜色也由暗变亮。到30日,两SBR池的SVI都降到了200mL/g以下,出水COD也已稳定在100mg/L以内。镜检发现污泥恢复到了原来的菌胶团正常状态,且丝状菌基本消失,仅有少量短碎单枝夹裹在污泥中;草履虫和豆形虫等这些只有在污泥性能不好时才出现的微生物也大为减少。污泥膨胀已得到有效控制。
以后控制每天的排泥量,保证MLSS在3000mg/L左右,系统一直运行稳定,膨胀再也没有发生。
2000年5月后,来水水质、水量逐渐正常,又恢复了三池运行及原来的运行参数。针对情况变化,始终着重于通过污泥负荷的控制来调整工艺,确保了系统稳定运行。
4 污泥膨胀及控制机理
和菌胶团细菌相比,丝状菌具有比表面积大和在低底物浓度时竞争生长优势明显的特性,因而低有机负荷被认为是引起污泥膨胀的重要因素。
SBR法能有效抑制丝状菌生长的关键在于反应器内存在较高的有机底物浓度梯度(在时间上),同时对应存在着一个变化的污泥负荷,这一非稳态的过程不利于丝状菌竞争生长优势的发挥。在本例中,0.05kgBOD/(kgMLSS?d)的负荷在SBR工艺设计中已属低负荷范围;当来水有机物浓度较低时,偏小的排出比(1∶4)又使混合液进一步被稀释;由给出数据不难算出,COD实际浓度变化为80~250 mg/L(设计出水COD为80mg/L),不能形成较高的浓度梯度;而对于高出设计近一倍多的污泥浓度则污泥负荷更低且基本没有梯度变化,上述这些情况都无法对丝状菌形成抑制。低负荷必然又对应着长泥龄,这又利于丝状菌(比增长速率小于胶团细菌)在反应器内的停留、生长。同时,低负荷下相对较高的溶解氧浓度也利于丝状菌(绝大多数为专性好氧菌)生长。所以,正是由于负荷过低造成了这次污泥膨胀的发生。
请输入账号
请输入密码
请输验证码
以上信息由企业自行提供,信息内容的真实性、准确性和合法性由相关企业负责,仪表网对此不承担任何保证责任。
温馨提示:为规避购买风险,建议您在购买产品前务必确认供应商资质及产品质量。