当前位置:潍坊鲁盛水处理设备有限公司>>地埋式生活污水处理设备>> WSZ-F-3一体化生活污水处理设备
产地 | 国产 | 加工定制 | 是 |
---|
WSZ-F-3一体化生活污水处理设备
*价 它可以埋入地下,节省地表面积,设计建造,保温等复杂环节。同时,具有出水水质好,运行稳定等特点
地埋式污水处理一体化设备,鲁盛环保专业水处理设备,提供专业的设计,制造,安装和调试,售后服务,免费上门安装及操作培训
1 温 度
生物硝化反应在 5~40 ℃均可进行,但 15 ℃为分界点。温度高于 15 ℃时,AOB 的生长速度高于NOB,AOB 的zui小泥龄小于 NOB 的zui小泥龄,并且随着温度的升高,二者的差值将增加,所以高温有利于 AOB 的生长。在 25 ℃以上控制泥龄,可以有效地选择 NOB。目前的工程实例通常将亚硝化过程的温度控制在 30~35 ℃。
多数研究认为,AAOB 的理想温度条件为 30~40 ℃,但是自然条件下在温度较低时也可以进行稳定的厌氧氨氧化反应,RYSGAARD 等指出在 -1.3 ℃时,北极海底沉积物中的 AAOB 菌仍具有活性。低温条件下反应器中的 AAOB 菌的活性一直受到关注,一些研究结果表明,在亚硝化 - 厌氧氨氧化工艺系统中,温度降到 20 ℃以下后都测定发现了 AAOB菌的活性,有些研究显示,在 10 ℃甚至更低温度都有可能存在稳定的厌氧氨氧化反应。但是也有研究指出,当温度降低到 15 ℃时,生物膜反应器内开始积累NO2-,表明 AAOB 菌的活性受到了抑制。
2 基质含量和 pH
厌氧氨氧化反应的基质为氨和亚硝酸,二者含量过高均会对微生物产生抑制作用。
基质氨对 AAOB 的影响较小,只有氨的质量浓度超过 1 g/L 才能抑制。基质氨的抑制主要由 FA产生。FA 对 AOB 和 NOB 均有抑制,但抑制的含量范围不同。ANTHONISEN 等报道了质量浓度 0.1~1.0 mg/L 的 FA 对亚硝化单胞菌属(Nitrosomonas)有抑制作用,而质量浓度 10~150 mg/L 的 FA 对硝化杆菌属(Nitrobacter)有抑制作用[7]。在亚硝化工艺中将 FA 的质量浓度控制上述 2 个范围之间,NOB 就会被抑制而产生NO2-积累。
基质中的 FNA 对 AOB 和 NOB 均有抑制,而离子态亚硝酸盐NO2-的影响较小。FNA 对 AOB 和NOB 的抑制质量浓度为 0.01~1 mg/L,哪种细菌对FNA 具有更高的耐受性,目前的研究结果仍相互矛盾。NO2-对 AAOB 的影响较大,当NO2-的质量浓度高于 100 mg/L 时,AAOB 活性被*抑制。
pH 一方面影响了 AOB、NOB、AAOB 等微生物的生长活性,另一方面影响了NH4+和 FA 以及NO2-和 FNA 之间的化学平衡。一般而言,在中性偏碱性条件下,AOB 和 AAOB 才能表现出相对较高的生长活性。AOB 适宜生长的 pH 是 7.0~8.6,AAOB 适宜生长的 pH 为 6.5~8.8[10]。pH 较高时,化学平衡向生成 FA 方向进行;pH 较低时,化学平衡向生成 FNA方向进行。当 pH 分别大于 8.0 和低于 6.0 时,FA 和FNA 在体系内所占比例迅速增大。经计算,35 ℃水溶液中总NO2--N 的质量浓度为 500 mg/L、pH 为 7时,FNA 的质量浓度只有 0.1 mg/L。所以当 pH 大于7 时,FNA 对 AOB 和 NOB 的抑制作用较为有限。
3 DO 含量
AAOB 为严格厌氧菌,STROUS 等指出,在 DO含量为 0.5%~2.0%空气饱和度时,AAOB 活性被*抑制。但该抑制是可逆的,DO 消除后,AAOB 的活性可以恢复。AOB 和 NOB 都是严格好氧菌,当AAOB 和 AOB 共存在系统中时,AOB 消耗了 DO,所以即使 DO 的质量浓度在高于 0.2 mg/L 的条件下,AAOB 也可以保持正常活性,这使得亚硝化结合厌氧氨氧化工艺的一段式系统成为可能。实际工艺中还利用颗粒污泥和填料富集微生物,形成 DO 内外不同的微环境,为 AAOB 和 AOB 在系统中共生创造条件。
好氧菌 AOB 和 NOB 对 DO 有竞争作用,二者的 DO 半饱和系数分别为 0.74~0.99 mg/L 和 1.4~1.75 mg/L,所以 AOB 具有更好的氧亲和力。在实际工艺中,通常将 DO 含量控制在较低的水平,可以使AOB 优先获得有限的氧,抑制 NOB 的活性。文献中报道的抑制 NOB,维持 AOB 活性的临界 DO 含量各不相同。RUIZ 等指出,临界 DO 的质量浓度宜控制在 1.7 mg/L 以下;而 HANAKI 等认为,在 25 ℃时将 DO 的质量浓度降至 0.5 mg/L,AOB 没有受到明显影响,而 NOB 活性下降。除了直接控制 DO含量,也可以利用生物膜和颗粒污泥内存在传质阻力,间接限制 DO 含量,抑制 NOB。
4 有机物可生物降解有机物不直接影响 AAOB,但能诱导反应器内普通异养菌(OHO)的生长。由于 AAOB的生长速率比 OHO 低得多,当存在过量的有机碳时,异养细菌将占据反应器的主导地位,因而限制了AAOB 生长的空间和底物。通常,在一体式厌氧氨氧化工艺中,进水可降解 COD 和总NH4+-N 的质量浓度比需要低于 0.5。另一方面,如果进水中含有一定含量的可降解有机物,那么出水中的硝酸盐可以被去除,所以 TN 去除率是提高的。
WSZ-F-3一体化生活污水处理设备VEUILLET 等发现,当进水中慢速降解 COD:ρ (NH4+-N)低于 0.5 时,出水 ρ (NO3--N)/ρ (NH4+-N)约4%;当 COD:ρ(NH4+-N)在 1:1~1.5:1 时,出水 ρ(NO3--N)/ρ(NH4+-N)约 1%。一些研究指出,当进水中含有醋酸盐、甲醇等其他有机物时,COD:ρ(TN)达到 2 左右时,AAOB 菌的活性受到抑制[14]。LACKNER 对 14 个生产性反应器测试后指出,进水 COD:ρ(TN)从 1 提高至 1.5 后,生物膜系统对 TN 的去除率没有降低。
JENNI 等指出,在悬浮生长系统中,只要泥龄足够,进水 COD:ρ(TN)提高至 1.5 时,AAOB 可以与 OHO共存。但进水 COD:ρ(TN)*低于 1:1。1制药废水的处理方法
制药废水的处理方法可归纳为以下几种:物化处理、化学处理、生化处理以及多种方法的组合处理等,各种处理方法具有各自的优势及不足。
1.1物化处理
根据制药废水的水质特点,在其处理过程中需要采用物化处理作为生化处理的预处理或后处理工序。目前应用的物化处理方法主要包括混凝、气浮、吸附、氨吹脱、电解、离子交换和膜分离法等。
1.1.1混凝法
该技术是目前国内外普遍采用的一种水质处理方法,它被广泛用于制药废水预处理及后处理过程中,如硫酸铝和聚合硫酸铁等用于中药废水等。高效混凝处理的关键在于恰当地选择和投加性能优良的混凝剂。近年来混凝剂的发展方向是由低分子向聚合高分子发展,由成分功能单一型向复合型发展。刘明华等以其研制的一种高效复合型絮凝剂F-1处理急支糖浆生产废水,在pH为6.5,絮凝剂用量为300mg/L时,废液的COD、SS和色度的去除率分别达到69.7%、96.4%和87.5%,其性能明显优于PAC(粉末活性炭)、聚丙烯酰胺(PAM)等单一絮凝剂。
1.1.2气浮法
气浮法通常包括充气气浮、溶气气浮、化学气浮和电解气浮等多种形式。新昌制药厂采用CAF涡凹气浮装置对制药废水进行预处理,在适当药剂配合下,COD的平均去除率在25%左右。
1.1.3吸附法
常用的吸附剂有活性炭、活性煤、腐殖酸类、吸附树脂等。武汉健民制药厂采用煤灰吸附-两级好氧生物处理工艺处理其废水。结果显示,吸附预处理对废水的COD去除率达41.1%,并提高了BOD5/COD值。
1.1.4膜分离法
膜技术包括反渗透、纳滤膜和纤维膜,可回收有用物质,减少有机物的排放总量。该技术的主要特点是设备简单、操作方便、无相变及化学变化、处理效率高和节约能源。朱安娜等采用纳滤膜对洁霉素废水进行分离实验,发现既减少了废水中洁霉素对微生物的抑制作用,又可回收洁霉素。
1.1.5电解法
该法处理废水具有高效、易操作等优点而得到人们的重视,同时电解法又有很好的脱色效果。李颖采用电解法预处理核黄素上清液,COD、SS和色度的去除率分别达到71%、83%和67%。
1.2化学处理
应用化学方法时,某些试剂的过量使用容易导致水体的二次污染,因此在设计前应做好相关的实验研究工作。化学法包括铁炭法、化学氧化还原法(fenton试剂、H2O2、O3)、深度氧化技术等。
1.2.1铁炭法
工业运行表明,以Fe-C作为制药废水的预处理步骤,其出水的可生化性可大大提高。楼茂兴等采用铁炭—微电解—厌氧—好氧—气浮联合处理工艺处理甲红霉素、盐酸环丙沙星等医药中间体生产废水,铁炭法处理后COD去除率达20%,zui终出水达到国家《污水综合排放标准》(GB8978—1996)一级标准。
1.2.2Fenton试剂处理法
亚铁盐和H2O2的组合称为Fenton试剂,它能有效去除传统废水处理技术无法去除的难降解有机物。随着研究的深入,又把紫外光(UV)、草酸盐(C2O42-)等引入Fenton试剂中,使其氧化能力大大加强。以TiO2为催化剂,9W低压汞灯为光源,用Fenton试剂对制药废水进行处理,取得了脱色率,COD去除率92.3%的效果,且硝基苯类化合物从8.05mg/L降至0.41mg/L。
1.2.3氧化法
采用该法能提高废水的可生化性,同时对COD有较好的去除率。如Balcioglu等对3种抗生素废水进行臭氧氧化处理,结果显示,经臭氧氧化的废水不仅BOD5/COD的比值有所提高,而且COD的去除率均为75%以上。
1.2.4氧化技术
又称高级氧化技术,它汇集了现代光、电、声、磁、材料等各相近学科的*研究成果,主要包括电化学氧化法、湿式氧化法、超临界水氧化法、光催化氧化法和超声降解法等。其中紫外光催化氧化技术具有新颖、高效、对废水无选择性等优点,尤其适合于不饱合烃的降解,且反应条件也比较温和,无二次污染,具有很好的应用前景。与紫外线、热、压力等处理方法相比,超声波对有机物的处理更直接,对设备的要求更低,作为一种新型的处理方法,正受到越来越多的关注。肖广全等用超声波-好氧生物接触法处理制药废水,在超声波处理60s,功率200w的情况下,废水的COD总去除率达96%。;
请输入账号
请输入密码
请输验证码
以上信息由企业自行提供,信息内容的真实性、准确性和合法性由相关企业负责,仪表网对此不承担任何保证责任。
温馨提示:为规避购买风险,建议您在购买产品前务必确认供应商资质及产品质量。