潍坊鲁盛水处理设备有限公司
免费会员

当前位置:潍坊鲁盛水处理设备有限公司>>美丽乡村污水处理设备>> 一体化美丽乡村生活污水处理设备

一体化美丽乡村生活污水处理设备

参   考   价: 13500

订  货  量: ≥1 台

具体成交价以合同协议为准

产品型号

品       牌其他品牌

厂商性质生产商

所  在  地潍坊市

联系方式:逄政委查看联系方式

更新时间:2021-09-02 09:06:53浏览次数:188次

联系我时,请告知来自 仪表网
产地 国产 加工定制
一体化美丽乡村生活污水处理设备,厌氧氨氧化技术主要有3个特点:一是附着性,厌氧氨氧化技术中存在的颗粒污泥和填料使得悬浮污泥很难进行培养。二是该技术需要较高的温度,32℃好,低温则不行。三是增殖速度非常慢。

一体化美丽乡村生活污水处理设备
国内外采用的污水处理工艺很多,其中主要分为活性污泥法和生物膜法两种,我们常见的普通曝气法、氧化沟法、A/B法、A2/O法属于前者,生物转盘、接触氧化法属于后者。 
污水处理设备价格是由处理什么样的污水、水量多少、处理到什么程度而决定的,所以很难简单给出一个价格,具体您可以咨询我们销售人员。
目前城市污水脱氮技术发展得很快,但主流厌氧氨氧化应用几乎还是零。厌氧氨氧化技术主要有3个特点:一是附着性,厌氧氨氧化技术中存在的颗粒污泥和填料使得悬浮污泥很难进行培养。二是该技术需要较高的温度,32℃好,低温则不行。三是增殖速度非常慢。城市污水一般存在低氨氮、低温、大水量等特点,而正因为这三个理由,厌氧氨氧化技术在城市污水处理应用中受到了很大的阻碍。
但厌氧氨氧化技术也有其优势所在。目前主流城市污水脱氮技术存在一大难点,就是能耗高、消耗大。厌氧氨氧化可以把一半左右的氨氮氧化为亚硝酸根,然后在厌氧氨氧化作用下还原为氮气,这对于城市污水处理的节能是非常有利的。*,新加坡的气温较高,很适用于厌氧氨氧化技术,但那里依旧有许多厌氧氨氧化技术工程被废弃,可见该技术在城市污水处理中推广难度之大。所以,将厌氧氨氧化技术*应用于城市污水处理之中还任重道远。
我国早期的工业聚集区产业结构多样,废水水质、水量变化大,成分复杂,有毒有害且难降解有机物含量高。当前越来越多的流域和地区制定了较《城镇污水处理厂污染物排放标准》(GB 18918-2002)更为严格的地方性排放标准,工业聚集区废水处理厂达标排放面临更大的挑战。提标改造工程需根据特定的水质特点,从源头调控、稳定预处理、强化生物处理、完善深度处理的角度出发,针对特征污染物采取有效措施,合理确定工艺路线。


 新型生物脱氮过程
传统生物脱氮理论积累多年,并在工程实践中广泛应用,但也存在一些不足。由于传统脱氮中硝化与反硝化过程对于溶解氧与有机物需求不同,这导致硝化与反硝化很难在时间与空间上*同步发生在同一环境内,如何能够减少外加碳源的投加、缩短脱氮过程流程、降低构筑物占地一直是研究热门。在研究人员对生物脱氮中物料守恒、能量代谢等方面的持续关注下,一些相对新颖的生物脱氮过程逐渐被提出并完善,接下来本文将对几种常见新型生物脱氮过程进行简单介绍。
1 新型生物脱氮汇总
近年来,短程硝化、厌氧氨氧化、好氧反硝化等新型生物脱氮过程逐渐引起人们注意,标红处是该项新型生物脱氮过程与传统生物脱氮过程的区别所在。
2 厌氧氨氧化VS好氧氨氧化
传统生物脱氮中,氨氧化(即亚硝化)过程为好氧过程,细菌需要溶解氧作为电子受体实现氨氮的氧化。从1989年欧洲科学家在厌氧反应器中发现了厌氧氨氧化现象起,越来越多的厌氧氨氧化研究报告拓展了我们对于生物脱氮的认知范围。除了污水处理,厌氧氨氧化还被发现存在于地球上的多种自然环境,其对于地球范围内氮素循环的贡献不容忽视。
厌氧氨氧化细菌可以在厌氧环境下以氨氮为电子供体、以亚硝酸盐为电子受体,产生氮气和少量硝酸盐。由于厌氧氨氧化菌一般呈现红色,因此也常常被称为“红菌”。厌氧氨氧化菌是自养微生物,以二氧化碳等无机物为碳源进行自身生长合成。由于厌氧氨氧化无需好氧曝气条件与有机碳源,其在曝气能耗削减与有机碳源节约方面有着显著优势,因此近年来厌氧氨氧化成为发展zui迅猛的新型脱氮理论之一。由于需要亚硝酸盐作为电子受体,厌氧氨氧化常与短程硝化结合,通过短程硝化将部分氨氮氧化为亚硝酸盐,并与剩余氨氮进行厌氧氨氧化反应。
在工艺设计中,短程硝化与厌氧氨氧化过程可在同一工段进行,也可分为两段进行。目前厌氧氨氧化技术在国内外已有中试乃至实际规模运行案例,相比于主流厌氧氨氧化(污水处理的主线流程),污水处理厂的侧流(污泥处理中的消解液)厌氧氨氧化处理发展较快,这是由于侧流厌氧氨氧化过程中有机物浓度、氨氮浓度、温度等相关因素较为理想,而主流过程中则存在较多不利于厌氧氨氧化的条件,因此主流厌氧氨氧化的扩大与推广仍存在不少技术问题有待解决。此外,基于颗粒污泥技术的短程硝化-厌氧氨氧化技术也是研究热门。
一体化美丽乡村生活污水处理设备1 提标改造总体工作思路
1.1 特征污染物识别
对工业聚集区的既有排污企业进行摸底调查,了解其生产工艺和主要原材料,分析其可能产生的污染组分。逐一调研其所属行业排放废水的水质特点和行业排放标准,了解企业内部既有的废水处理工艺,分析废水中可能存在的TDS、难降解有机物、有毒有害物质、有机磷、不可氨化的有机氮等制约达标排放的限制性因素,为制定有针对性的提标改造方案奠定基础。
1.2 搜集实际进出水水质资料、分析污染组分、水质特点、变化规律和现状设施能够达到的处理效果
分析工业聚集区废水处理厂实际进水水质,重点关注pH、油、悬浮物、色度、碱度、重金属、铁、铜、氰hua物、TDS、苯系化合物、氯系化合物、医药中间体、特殊显色基团等非常规检测的污染物含量。通过分析B/C判断可生化性,分析氨氮和总氮指标的差值判断生物脱氮的可行性,通过长历时的生物处理试验判断难降解COD的含量,通过观察生物反应池内的污泥性状了解来水的生物毒性。
了解运行过程中曾经出现过的异常现象,如污泥分散、污泥上浮、进水pH和颜色变化、悬浮物和漂浮物含量变化等等,分析进水水质的变化规律。
搜集实际出水水质指标及其变化规律,将其与排放标准对照,分析提标改造需要强化去除的污染物指标;与进水水质对照,分析现状设施运行效能。传统生物脱氮过程
1 传统生物脱氮过程简介
目前在工程实践中应用zui广泛的传统生物脱氮过程主要包含好氧硝化-缺氧反硝化两部分组成,其过程如图1所示。进水中蛋白质等有机氮经过氨化细菌的脱氨作用转化为氨氮,随后氨氮在好氧条件下由自养型的亚硝化细菌和硝化细菌逐渐氧化为亚硝酸盐氮和硝酸盐氮,硝酸盐氮在缺氧条件下由异养型的反硝化细菌还原为亚硝酸盐氮,并继续还原为一氧化氮、一氧化二氮及氮气等气体离开系统完成脱氮。
进水中氮素在生物处理过程中经历了由多种不同细菌参与的转化过程,由于细菌是生物转化的“执行者”,假如环境条件对于负责某项功能的细菌不利,那么这一部分转化过程就可能出现问题。在工程中为改善生化系统脱氮性能,调试人员大多会从溶解氧含量、有机物含量、碱度及环境条件冲击等几方面入手。其实,在这些宏观参数的调节背后,技术人员所做的一切都是为了更好地满足脱氮过程中不同微生物的生长代谢特点,简单来说就是“投其所好”。因此,借鉴这一微生物视角对污水处理生化系统进行分析,为执行特定功能的微生物提供更好的生长代谢条件,就可以帮助我们更好地实现高效脱氮。
2 传统生物脱氮细菌特点在实践中,大家可根据针对对象及功能菌群菌的特点,通过参数调节促进那些我们所需要的微生物的良好生长代谢。
氨化细菌可以利用有机物获取能量并进行生长代谢,且其在好氧和缺氧环境都可生长,这些特点使得氨化细菌生长迅速、分布广泛,在生化系统中很少成为问题所在。因此,我们主要探讨亚硝化菌、硝化菌和反硝化菌。
2.1 亚硝化菌
亚硝化菌主要参与系统中氨氮被氧化为亚硝酸盐的过程,是生化系统中氨氮去除的主要功能菌。从微生物学角度来看,亚硝化细菌是一类在好氧条件利用无机碳源合成自身菌体、利用氧化氨氮释放能量的化能(能量来源)-好氧(溶氧要求)-自养(碳源类型)细菌。


针对碳源类型,亚硝化菌需要利用无机碳源进行合成代谢,亚硝化细菌生长缓慢,在生化系统中所占总量较小,因此其对于外界环境影响较为敏感,低温环境、负荷冲击、毒物流入、污泥流失等不良条件均可能导致亚硝化菌活性下降,使得系统出现氨氮去除率低,出水氨氮偏高的现象;针对能量来源和溶氧要求,亚硝化菌通过在好氧环境下氧化氨氮获取化学能供给自身的生长代谢,因此充足的溶解氧以及适宜的氨氮浓度是维持亚硝化菌良好生长的必需条件。此外,由于亚硝化过程会导致系统碱度下降,而亚硝化菌的zui适pH值范围约为在7.0-7.5,因此应注意曝气池pH值,避免pH值过低导致亚硝化菌活性下降,氨氮去除不佳。

会员登录

×

请输入账号

请输入密码

=

请输验证码

收藏该商铺

X
该信息已收藏!
标签:
保存成功

(空格分隔,最多3个,单个标签最多10个字符)

常用:

提示

X
您的留言已提交成功!我们将在第一时间回复您~
在线留言