开封市中仪流量仪表有限公司
阅读:120发布时间:2021-12-22
非均匀磁场电磁流量计磁场的计算与分析
摘要:在非均匀磁场电磁流量计原理的基础上,利用matlab解出了励磁线圈的截面形状,并通过ANSYS对励磁线圈的磁场进行仿真,结果表明所求解的励磁线圈所产生的磁场符合非均匀电磁流量计的要求。
关键词:非均匀磁场;电磁流量计;励磁线圈;Matlab ;ANSYS仿真..
0 引言
电磁流量计是利用法拉第电磁感应定律的原理来测量导电液体体积流量的仪表,主要由传感器和转换器组成。电磁流量传感器安装在流体传输工艺管道上,用来将导电液体的流速(流量)线性地转换成感应电势信号,电磁流量转换器向传感器提供工作磁场的励磁电流,接受感应电势信号,将流速(流量)信号进行放大、处理并转换成统一的、标准的电流、电压等信号。目前电磁流量计广泛应用在钢铁、冶金、排水、石油、化工、食品、医疗、环保、航空、航海、航天、农业灌溉等部门。电磁流量计根据其内部磁场是否均匀分为均匀磁场电磁流量计和非均匀磁场电磁流量计。由于目前电磁流量计正在向着非均匀电磁流量计的方向发展,所以本文主要对非均匀电磁流量计进行研究。
1 非均匀磁场电磁流量计理论
测量原理基于法拉第电磁感应定律。即当导电液体流过电磁流量计时,导体液体中会产生与平均流速.. v(体积流量V)成正比的电压,其感应电压信号通过2个与液体接触的电极检测,通过电缆传至放大器,然后转换成统一的输出信号。基于电磁流量计的测量原理,要求流动的液体具有限度的电导率。Shercliff通过麦克斯韦方程组得到电磁流量计所产生的感应电动势的公式[1]:▽2→→→→ →U=div(v×B)=B.rotv-v.rotB 由于磁场不会因为流体中感应电流而受到影响,所以式中的第二项为0,得到▽2→U=B.rotv这就是电磁流量计的基本微分方程。北京大学的王竹溪对上述方程进行了详细的讨论与求解[2],得出:2UAB=π—r∫ ∫∫v(r,θ)B(r,θ)W(r,θ)rdrdθ.. 式中,W(r,θ)被称为权重函数。由于靠近电极部分的导电液体对输出信号的贡献大,远离电极部分的导电液体对输出信号的贡献小,所以必须要引入一权重函数。对于长管电磁流量计:a2(a2+x2+y2)W(r,θ)= a4+2a2(x2+y2)+(x2+y2)2 长管权重函数图形如图1所示。对于短管电磁流量计: 1+ρ2cos(2θ)W(r,θ)=+1+2ρ2cos(2θ)+ρ4 nπzΣ√2πγne-nλch(nλρsin )cos—— ∞θ n=1 L (ρ=γ/a,λ=πa/L)y 25 20 15 10 5 0 Z 1 0.5 0 ﹣0.5 ﹣1﹣1 ﹣0.5 0 0.5 1 Y O A B x 图.. 1长管权重函数图形(值处为电极)注:XOY平面为电极处的测量管内部截面;X、Y轴为归一化以后的坐标。.. 如果使测量管内的磁场满足B(r,θ)W(r,θ)=常数.. C,那么电磁流量计电极之间的电压为:π2r∫ ∫∫UAB=— v(r,θ)B(r,θ)W(r,θ)rdrdθ 2=C·—2∫ ∫∫v(r,θ)rdrθd =C·—·Qπr πr 式中,Q为通过电磁流量计的流量。当电磁流量计满足.. B(r,θ)W(r,θ)=常数C时,电极两端的电压值只与流体的流量有关,而与速度的分布无关。
2 非均匀磁场的励磁线圈的求解
由于智能电磁流量计的权重函数只与测量管几何形状和电极形状有关,所以对于一个几何形状、电极大小都确定的电磁流量计,权重函数是确定的。根据B(r,θ) W(r,θ) =常数C,可以求解出B(r,θ)的值。根据上述思路可以通过推导求得B(r,θ)的值。由于B(r,θ)的大小分布是由线圈的尺寸来决定的,所以通过计算B(r,θ)的值,可以得到能满足要求的线圈截面形状。假设线圈形状为翼型线圈,电磁流量计模型图如图2所示,1/4模型图如图3所示。图3中阴影部分为励磁线圈形状,A点为电极A的位置。根据安培回路积分公式可以得到[3]:→∫H·dl=I=j·ds=j·(l-√R2-y2)·dy →.. →→→而B=μ0·HB,(r,θ)W(r,θ)=C,Hy=0,Wx<<Wy,假设管径R=1 ,可得:d dx{d—y∫Wyl =-2a(l-√1-y2) 0ly=0=1 式中,a= j·μ0 C。解上述方程组可得:图.. 2 电磁流量计模型图.. y P 1 P 1 O P 2 P 2 A x 图3 电磁流量计1/4模型图.. [—+—(—arctan—+—arctan—)]=﹣2a(l-√1﹣y2){dd ysl s 1√μh √μl √vg √vl ly=0=1nπzs=Σ√2πλne-nλch(n ρsinθ)cos令n∞=1 λL; A=2(1+y2) ;B=y4-2y2+1 ;C=2sy2+2s+1 ; D=sy4-(2s+1)y2+s+1。则式中:ν=C-√C2-4sD ;μ= C+√2sC2-4sD ;2s h= μ(A-—sC )-(B-—Ds);g= μ(B-—sD)-(A-—Cs )。μ-νμ-ν.. 根据辛卜生公式∫abf(x)dx≈b-a[f(a)+4f(c)+f(b)]6(其中c= a+2 b ),可得:0-2a(l-√1-y2)dy= -2[al-1+4(l-—)+l]=-2a(l-1+2√3∫16√236) 所以上述方程组变为:—+—(—arctan—+—arctan—)]=-2a(l-){sl 1 s√μh √μl √vg √lv 1+26√3 ly=0=1利用Matlab对上述方程进行数值求解,当a=1时可以求得(l,y)一系列数值,见表1。
3 非均匀励磁线圈产生磁场仿真
通过ANSYS软件对电磁流量计产品进行建模,然表1( l,y)数值计算结果
l 1 1.0457 1.1796 1.3975 1.6858 2.0131 2.3196 2.4784 2.1997 0.9481 0 y 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1后进行仿真[4]。电磁流量计模型、总体磁场分布仿真结果、管内的磁场分布分别如图4、图5、图6所示。图.. 4 电磁流量计模型NODAL,SOLUTION STEP=1 SUB=1 TINE=1 HSUN (AVG) RSYS=0 SUN=3.382 SUX=82728 3.382 9930 19857 29784 39711 49638 5 9565 69492 82728图.. 5 总体磁场分布仿真结果.. 通过此仿真结果可以看出,电极处的磁场强度最小,而离电极越远处的磁场强度越大。此结果刚好与权重函数相反,此种截面形状的线圈基本上满足要求的非均匀磁场电磁流量计的条件。图.. 6 管内的磁场分布(圆内)
4 结语
在麦克斯韦方程组的基础上得到电磁流量计的基本方程,建立电磁流量计基本的假设模型,通过Matlab解出符合非均匀磁场的励磁线圈截面尺寸,在ANSYS中对包含此线圈尺寸的电磁流量计建模并求解,从仿真结果可以得出此励磁线圈产生的磁场符合非均匀电磁流量计磁场分布的要求。因此,这一方法对于求解非均匀电磁流量计的励磁线圈尺寸是可行的。根据此方法,改变方程中参数a的值可以得到更多的符合非均匀电磁流量计磁场要求的励磁线圈的截面尺寸。
参考文献
[1]蔡武昌,马中元,瞿国芳,等. 智能电磁流量计[M].北京:中国石化出版社,2004[2] J.A.SHERCLIFF, The Theory of Electromagnetic Flow—.. measurement [M]. CAMBRIDGE: CAMBRIDGE UNIVERSITY PRESS,1962[3]邬惠峰,严义,吴红娉. 基于ANSYS的电磁流量计建模研究[J].仪器仪表学报, 2008,.. 29(2):.. 2[4]金宁德,宗艳波,张玉辉,等. 四电极电磁流量计磁场分布特性数值模拟[J].工业计量,.. 2009,2[5]陈廷相,邰亚传,薛迪熙. 几种非均匀磁场型电磁流量计励磁线圈尺寸的确定 [J].上海交通大学学报,.. 1982,(1)[6] Roger C. Baker, M.A., Ph.D. Numerical analysis of theelectromagnetic flowmeter[J]. PROC.IEE, 1973,.. 120(9)--扩展阅读:开封中仪流量仪表有限公司专业生产电磁流量计、孔板流量计、涡街流量计、文丘里流量计、v锥流量计、v型锥流量计、喷嘴流量计、插入式电磁流量计、智能电磁流量计、分体式电磁流量计、一体式电磁流量计、标准孔板流量计、标准孔板、一体化孔板流量计、标准喷嘴流量计、长径喷嘴流量计、标准喷嘴、长径喷嘴、插入式涡街流量计、智能涡街流量计、锥型流量计、v锥型流量计、节流装置、节流孔板、限流孔板等流量产品,更多有关电磁流量计、孔板流量计、涡街流量计的信息请访问开封中仪网站:
仪表网 设计制作,未经允许翻录必究 .
请输入账号
请输入密码
请输验证码
请输入你感兴趣的产品
请简单描述您的需求
请选择省份