浙江三精阀门有限公司
免费会员
不锈钢阀门
衬氟衬胶阀门系列
电站阀门系列
气动调节阀系列
电动调节阀系列
铜阀门系列
排气阀系列
刀型闸阀浆料阀系列
放料阀系列
过滤器系列
水力控制阀系列
YQ980010-LS20010型过滤活塞式预防水击泄放阀 YQ980011-LS20011型过滤活塞式流量控制阀 YQ980012-LS200012型过滤活塞式可调减压流量控制阀 ZYA-9000活塞式水锤吸纳器 ZSJZ系列法兰式水流指示器 HS41X-A型带过滤防污隔断阀 YQ98007-LS20007型过滤活塞式高度水位控制阀 H142X液压水位控制阀 100A角型定水位阀 JD745X型多功能水泵控制阀 AX742X安全泄压阀/持压阀 900X紧急关闭阀 800X压差旁通阀 700X多功能水泵控制阀 600X水力电动控制阀 500X泄压/持压阀 400X型流量控制阀 100X遥控浮球阀 HS11X丝扣倒流防止器 J644、J744X液压、气动角式快开排泥阀 JM742X型隔膜式池底卸泥阀 JM744X气动、液动快开排泥阀 YQ98002过滤活塞式安全泄压阀 YQ98006电磁控制阀 YQ98003型过滤活塞式遥控浮球阀 YQ98005过滤活塞式电动浮球阀 YQ98004型过滤式缓闭止回阀 YQ98001型过滤活塞式可调减压阀 BFD701液力自动控制阀 W100D定水位阀 ZSJZ型丝扣水流指示器
针型阀系列
气动角座阀系列
蝶阀系列
D371X对夹式蜗轮传动软密封蝶阀 D73H对夹式硬密封蝶阀 D971X对夹式电动软密封蝶阀 D71X型对夹软密封蝶阀 D671X/J气动对夹式蝶阀 D373H对夹式金属硬密封蝶阀 D941X系列电动法兰式软密封蝶阀 D71X/J手动对夹式衬胶蝶阀 D343H-10-16法兰式硬密封蝶阀 D643H型气动法兰式硬密封蝶阀 D73H型手动对夹式金属弹性硬密封蝶阀 D943H电动法兰式硬密封蝶阀 D942X型电动软密封蝶阀 D642X型气动软密封蝶阀 TD941W电动通风蝶阀 D943H电动不锈钢蝶阀 TD41W型手柄操作通风蝶阀 DS341X伸缩蝶阀 D342X蜗轮传动软密封蝶阀 D372X型蜗轮传动对夹式软密封蝶阀 D363H/W对焊式硬密封蝶阀 D943H电动法兰蝶阀 D973H电动对夹式硬密封蝶阀 D643H气动法兰蝶阀 D343H蜗轮法兰蝶阀 SD43F手动法兰式伸缩蝶阀 D673H气动对夹式硬密封蝶阀 蜗轮对夹蝶阀 GI高真空蝶阀 D671X对夹式气动软密封蝶阀
保温阀系列
减压阀系列
可调式减压稳压阀 先导式高压减压阀 YZ11X支管式减压阀 200P型减压阀 Y43H蒸汽减压阀 YK43F气体减压阀 200P型可调式减压阀 200X减压阀 Y11X直接作用薄膜式减压阀 Y13H型内螺纹先导活塞式蒸汽减压阀 YG13H/Y型内螺纹高灵敏度蒸汽减压阀 YK43X/F/Y型先导活塞式气体减压阀 YG43H/Y型高灵敏度蒸汽减压阀 Y42X型直接作用弹簧薄膜式减压阀 Y42X型弹簧活塞式减压阀 YB43X固定比例式减压阀 Y43X-A比例式减压阀 先导式超大膜片高灵敏度减压阀 YX741X(720X)BFAX107X活塞式减压阀 YQ98008-LS20008型减压泄压阀 YQ98009-LS20009型过滤活塞式定比减压阀 Y43H/Y型先导活塞蒸汽减压阀 YD13H先导式超大膜片高灵敏度减压阀 波纹管减压阀 Y13H/Y内螺纹活塞式蒸汽减压阀 Y45H/Y杠杆式蒸汽减压阀 Y42X薄膜弹簧减压阀
止回阀系列
升降式全铜止回阀 高压止回阀 锻钢止回阀 300X缓闭止回阀 H12W-16T黄铜丝口止回阀 H41X/W全铜消声止回阀 H61H锻钢焊接止回阀 H12W-16P/R不锈钢内螺纹止回阀 H14W内螺纹止回阀 H42H/W不锈钢法兰立式止回阀 HC44X橡胶瓣止回阀 H72Y对夹式高压止回阀 H76H/W对夹双瓣式蝶型止回阀 微阻缓闭式蝶形止回阀 H76X型对夹式蝶型止回阀 HQ45X微阻球形止回阀 HC42X*止回阀 H44W不锈钢旋启式止回阀 H14W旋启式内螺纹止回阀 H42H/W立式止回阀 175H48Y(H)-200型空排止回阀 H74H对夹圆片式止回阀 H42Y升降式高压止回阀 国标电站止回阀 磅级电站旋启式止回阀 对夹式*止回阀 H14W丝口旋启式止回阀 cvkr型大口径*式止回阀 DHH44X/H-10/16型蝶式缓冲止回阀 HC41X-10/16/25节能梭式止回阀 不锈钢升降式止回阀 焊接止回阀 H44H旋启式止回阀 SH74Ⅰ型对夹薄型止回阀 H71H/W对夹升降式止回阀 H71H/W对夹升降式全铜止回阀 H41X/W-16P不锈钢消声止回阀 H76H对夹式止回阀
截止阀系列
旋塞阀系列
安全阀系列
外螺纹安全阀 A41H弹簧微启封闭式安全阀 高温高压安全阀 A42Y-1000全启式超高压安全阀 HFA72W-10P/10R真空负压安全阀 弹簧全启封闭式安全阀 A42Y-160/320弹簧全启封闭式高压安全阀 GYA系列液压安全阀 A46F先导式安全阀 AY42H法兰式安全溢流阀 FA49H型防爆波安全阀 YFA72W真空安全阀 A41Y不锈钢高压安全阀 A38Y、A37H、A43H型双联弹簧式安全阀 A27H、A27Y型氧气安全阀 A47H、A47Y型蒸汽安全阀 A48Y、A44Y型带扳手弹簧全启式安全阀 GA49H型脉冲式安全阀 A61H-160-320弹簧微启式高压安全阀(焊接式) GA44H型双杠杆安全阀 AHN42F型平行式安全回流阀 YA40Y型带散热器弹簧全启式安全阀 AQ空压机安全阀 WA42Y波纹管平衡式安全阀 A49H高温高压主安全阀 GA41H、A51H型单杠杆安全阀 A21F、A21H、A21Y弹簧微启式外螺纹安全阀 A47H/W带扳手弹簧微启式安全阀 A27H型弹簧微启式安全阀 弹簧外螺纹全启式安全阀 锅炉安全阀 A47H弹簧微启式安全阀 蒸汽安全阀 AH42F安全回流阀、A42F液化石油气安全阀
闸阀系列
疏水阀系列
波纹管疏水阀 GSB8杠杆浮球式蒸汽疏水阀 脉冲式疏水阀 高温高压圆盘式膜盒式疏水阀 圆盘式仪表不锈钢疏水阀 CS11H/CS41H立式自由浮球疏水阀 S11H-16C空气排液疏水阀 圆盘式热动力蒸汽疏水阀 CS11H自动自由浮球式蒸汽疏水阀 CS15H、CS45H钟形浮子(倒吊桶)式蒸汽疏水阀 CS15H、CS45H自由半浮球式蒸汽疏水阀 CS14F-16C热静力波纹管式蒸汽疏水阀 FT14H杠杆浮球式蒸汽疏水阀 992倒吊桶式疏水阀 882F倒吊桶式疏水阀 CS14F/H CS44F/H液体膨胀式疏水阀 CS47H型双金属片式疏水阀 CS41H型自由浮球式疏水阀 FT44H杠杆浮球式蒸汽疏水阀 CSHR65A蒸汽保温型疏水阀 TSS43H天然气疏水阀 T47H浮球式蒸汽疏水调节阀 TB3F、TB5F、TB6F、TB11F、CS47H型可调双金属片温调式蒸汽疏水阀
电磁阀系列
ZS不锈钢列<常开型>二位二通零压差电磁阀 ZS铜系列<常开型>二位二通零压差电磁阀 ZCS(DF)系列空气、水液电磁阀 ZCS法兰电磁阀 DDC,DQC真空电磁阀 SLP铜系列<常闭型>二位二通先导式电磁阀 2W铜系列<大口径><常开型>两口两位直动式电磁阀 SLP不锈钢系列<常开型>二位二通先导式电磁阀 2W不锈钢系列<大口径><常开型> 动态平衡电动二通电磁阀 ZCLD超低温电磁阀 ZCRB系列燃气快速切断电磁阀 zcs膜片式电磁阀 电动二通电磁阀 cs-720定时排水阀 ZCZP3大口径二位二通高温高压电磁阀 防爆电磁阀 ZCA真空电磁阀 ZCF防腐型四氟活塞电磁阀 ZCM煤气电磁阀 LWGY型液体涡轮流量计 智能涡街流量计 LZNDC插入式电磁流量计 电磁阀:智能电磁流量计 电磁阀:SLF塑料王电磁阀 ZCRB系列常开式电磁紧急切断阀 2W(2L)系列电磁阀 ZCG型高温电磁阀 ZCZG ZCZH高温电磁阀 ZBSF全不锈钢电磁阀 ZQDF蒸汽电磁阀 ZCS/DF水用电磁阀
球阀系列
法兰式氧气球阀 卸灰球阀 美标球阀 三片式内螺纹球阀 Q47F锻钢固定球阀 Q41F/PPL法兰浮动球阀 上装式球阀 双偏心半球阀 Q941F电动球阀 气动保温球阀 三通不锈钢球阀 BQ44三通保温球阀 对夹式薄型球阀 BQ641F气动保温球阀 BQ971F气动对夹保温球阀 不锈钢氧气球阀 Q61F/N高压球阀 DQ41F低温球阀 Q646F气动四通球阀 Q46F四通球阀 Q61F三片式承插焊球阀 电动螺纹球阀 Q61F三片式活接对焊球阀 三片式法兰球阀 Q644F型气动三通球阀 Q947H型电动固定球阀 Q641F/PPL型不锈钢气动浮动球阀 Q41H锻钢三片式硬密封球阀 QJ941M/F电动高温球阀 VQ941F电动V型调节球阀 Q61H型高压对焊球阀 Q944F/Q945F电动三通球阀 Q47F锻钢固定球阀 F745(750X)BFH103X活塞式遥控浮球阀 手动真空球阀 球阀:Q11F二片式球阀 球阀:一片式内螺纹球阀 球阀:Q61F三片式对焊球阀 球阀:广式法兰球阀 球阀:Q45F三通四密封球阀 球阀:FQ41F型放料球阀 三片式锻钢球阀 高压焊接式球阀 Q641F气动球阀 Q44F/L型三通球阀.Q45F/T型三通球阀 Q41PPL不锈钢整体高温球阀 Q347F蜗轮固定式球阀 BQ41F保温夹套球阀 内螺纹三通球阀 Q946F电动四通密封球阀
调节阀系列
特种阀门
柱塞阀系列
真空阀门系列
呼吸阀阻火器系列
平衡阀系列
隔膜阀系列
气动执行器系列
液位计系列
管夹阀系列
隔断阀系列
水封阀系列
遥控阀系列
泄压阀系列
衬氟阀门

智能电气阀门系统控制优化方法研究

时间:2014/6/9阅读:700
分享:

随着科学计算的发展,工业生产的自动化技术也不断提高,调节阀作为电气自动控制系统中的重要部分,其性能的高低和总体电气控制系统的控制精度以及产品质量具有较强的关联性。阀门定位器是智能电气阀的关键部件,其能够有效解决阀杆的摩擦力以及介质的不均衡干扰,进而提高调节阀的控制效率和准确性。阀门定位器在工业生产中具有重要的作用,随着过程控制技术的发展,定位器的性能也应逐渐增强。当前越来越多的公司,如ABBFISHER公司等生产出了智能化的电气阀门定位器,这些智能定位器具有自主化、简便化等优势。

    当前的智能电气阀门定位器大都依据力平衡理论进行设计。通过重复调整不同的弹簧螺钉实现力均衡,zui终对流量进行有效的控制。电气定位器的结构较为单一,并且容易受到温度、振动变化的干扰,对安装检修技术的要求较高;并且需要对定位器零点,以及行程进行多次调整。智能电气阀门定位器控制模型,需要操作人员现场对部件的气腔体积、气源的变化性、电气转换模块的非线性等参数进行调整,存在效率低、误差大以及时间滞后等问题。因此,需要新一代的智能电气阀门定位器解决这些问题。

    智能电气阀门定位器工作原理分析

    智能阀门定位器主要用于调控控制阀,采集控制器输出的电流控制信号,通过气压信号调控阀门。调控阀产生动作后,阀杆会产生一定的位移,并将相关的信号传递到阀门定位器。定位器对输入控制信号和阀位反馈信号进行对比分析,如果两种信号不同,则促使阀门的驱动部件进行工作,直至两种信号相同为止。如果两种信号相同,则驱动部件不会对阀位进行调节。智能电气阀门定位器具有控制精度高、自主分析性强、效率高等优势。

    智能电气阀门定位器的工作原理用图1描述,关键的控制电路是单片机,其可采集控制器的阀门开度信号(420mA),获取该信号同实际的开度反馈信号差,按照该信号差的方向以及大小产生电压信号并对电气动放大器PV1以及PV2进行控制。

 

    随着电子技术的不断发展,单片机的集成度也不断增强,进而提高总体部件的运行效率和准确性;以单片机为基础的系统中主要采用PID控制算法完成定位控制;但是随着设备复杂程度的增加,这种控制方法的弊端逐渐显现。主要是由于气压经过单向阀A以及B的开关对阀门膜头的进气以及出气量进行调控,促使阀芯的位置发生变化,从而对气氛的开度进行适当的调控,实现阀门的准确定位。如果正信号误差较大,则产生的一系列信号将会导致单向阀A快速开启,单向阀B闭合,使得阀门膜头的气压增加,否则负信号误差较大时,产生的信号使得阀快速A闭合,阀B快速开启,使得阀门膜头气压降低,惯性增大。如果信号差是零,则产生的信号使得阀AB都闭合,此时阀门膜头气压的稳定性被破坏,形成控制信号模糊化,控制超调现象,影响控制精度。

    2 改进的动态自主PID控制方法

    由于误差的存在,导致传统的PID控制过程存在过控制现象。本文在传统的控制方法基础上,提出了一种基于融合去模糊化的PID控制方法。

    2.1 去除动态PID信号模糊性

    在传统的PID控制中,由于误差的存在,使得控制信号存在模糊性,为了去除这种模糊性,可设置动态PID控制器系统的误差是E,系统误差表达式为et)、误差波动率EC,表达式为et),K为调节系数,可得:

        1

        2

    则能够得到融合改进调整函数的控制律是:

    U=βE+1-β)EC   3

    式(3)中,β表示相应的比例系数,式(2)中Kect)表示微分系数,进而能够获取调整函数是

    β=β0+Kβ|EE|max  4

    式(4)中,β0用于描述|E|时调整因子,0≤β≤0.50≤β≤1Kβ是常数0Kβ≤(1-β0)。

    式(4)能够依据误差的大小自主调控误差以及误差的波动性对控制作用的权重。融合改进调整函数的动态PID控制器的结构图用图2描述。

 

    通过图2所示控制器能够对调整函数进行在线自主调控,误差eu间的控制规范具有动态性,误差e同控制u间的控制规范是一种动态的PID控制规范。

    依据相关的控制经验可得,Δkp、Δki、Δkd的波动范围分别是(-0.40.4)、(-0.080.08)、(-0.250.25),需要将这些参量归一化到范围(-55)中。设置系统e'ec',Δkp、Δki、Δkd的波动区域是模糊集的论域是e'ec',Δkp、Δki、Δkd={-5-4-3-2-1012345}模糊子集是e'ec',Δkp、Δki、Δkd={NBNMNSOPSPMPB},按照相关的控制经验可塑造Δkp、Δki、Δkd的模糊标准表,设置e'ec',Δkp、Δki、Δkd满足正态分布,明确论域中不同元素对模糊变量的隶属度,建立模糊控制表。利用重心法去模糊化,获得PID参数的修正值,采用查询表的方式在微控器中实现。

        5

    对上述分析的控制器参数e'ec'、Δkp,Δki,Δkd,如果只通过人工方法无法获取这些参数的*组合,通过改进方法能够获取这些参数的取值。通常将时间同误差的积作为分析控制器参数性能的指标函数,则有:

        6

    式(6)中,J用于描述误差加权时间后的积分面积大小,其可描述系统的响应效率、控制时间以及超调量的大小,并且能够降低系统的波动性。通常可采用式(6)描述的指标对控制器参数e'ec'、Δkp、Δki、Δkd进行寻优,依据性能指标规范,对控制器参数进行调整,zui终获取*的组合值。通过上述分析的指标函数能够及时调整函数β,并且需要改进β0以及Kβ两个参数,依据如下规范对其进行寻优:0≤β00.50Kβ≤(1-β00Kβ≤(1-β0),zui终完成对控制器参数的优化,通过*的智能电气阀门定位器控制参数组合,实现对控制器数据信号的准确调控。

    2.2 模糊消除后的PID控制过程

    在消除模糊性后,PID自整定通过积分的继电途径,控制系统输入频率、幅度以及设置好的三角波信号。并且系统的输出振动规范要求如式(7)所示。

        7

    μ90位置的频率响应幅值是

        8

    能够获取PID控制参数是

        9

    式(9)中,通过测量输出信号峰值能够获取振幅a,测量系统输出通过工作点的两次时间能够获取周期Td用于描述三角波峰值同半周期的比值。本文设置的阀门控制系统的相位裕度φm30°~50°,幅值裕度Am25

    智能电气阀门定位器系统运行时,气源压力和压电陶瓷阀具有多样性和随机性,因而要求系统的控制参数能够依据系统的实际情况,及时进行调整。自适应调控器结构用图3描述。

 

    并将系统消除模糊性后,得到的相应误差划分成15%之内和之外两部分,如果系统输出大于设置值的15%误差带,则进行Bang-bang控制,打开(关闭)压电比例阀,全速放气(充气),增强系统的定位效率。如果系统误差小于15%误差带,需要对系统进行自适应PID控制,将误差e以及误差波动率ec当成算法的输入,通过模糊规范后的PID参数对系统数据进行及时控制,采用12A/D采样将输入以及反馈转化成量化值0~(212-1),zui终使得e处于04095之中,ec处于02000之中,实现e以及ec的量化值归一化操作。

        10

    3 实验结果

    为了验证本文设计方法的有效性,需要进行相关的实验。实验系统包括420mA的电流输入源、智能阀门定位器硬件、直行程气动运行器以及信号收集卡。系统输入是电流,通过单片机采集数据,运算输出电压,并且调控压电陶瓷进行充气或放气,进而使得气动运行器的位置发生改变,实现对阀门的准确定位,通过数据收集卡将实时数据传送到计算机中。

    实验规定系统气动运行器的运行类型是直行程,阀门流量特性是直线流量特征,设置系统的相位裕度φm=45°,幅值裕度Am=2,通过式(5)能够得到PID控制参数的原始值kp=1.4064ki=0.230kd=0.8527。zui终获取本文方法和传统的PID方法的响应曲线用图4、图5描述,其中(a)用于描述周期性添加输入电流得到的响应曲线,(b)、(c)、(d)分别用于描述阀门开度在20%40%60%时的局部控制点精度放大图。

 

  描述了本文方法具有较强的稳定性,能够对系统的超调性进行及时的处理,并且相应的超调量低于2%,持续的时间是4s。与传统的图5对比,可以看出,本文的方法在不同开度的情况下,控制精度有了较为明显的提升。

    系统输入递增1.6mA时的控制时间用表1描述。

系统控制时间

 

    分析表1可得,本文设计的系统对不同的输入电流的调节时间都在相关的阀值内,能够对系统的信号进行及时的控制,解决了传统控制方法存在的时间滞后性问题,有利于对定位器信号进行准确的控制。

    4 结论

    本文提出了一种智能电气阀门定位器控制系统的优化设计方法,在综合分析智能电气阀门定位器的硬件结构基础上,采用改进的动态PID控制方法对定位器的信号进行有效的控制,该方法能够对阀门运行过程中的相关参数进行自主调整和优化,进而实现对阀门位置的准确控制,增强智能电气定位器控制的效率以及智能化。通过zui终的实验结果说明,本文设计的系统能够对电气阀门定位器的实时自主控制,具有较强的稳定性,能够对系统的超调性进行及时的处理,取得了令人满意的结果。

会员登录

×

请输入账号

请输入密码

=

请输验证码

收藏该商铺

X
该信息已收藏!
标签:
保存成功

(空格分隔,最多3个,单个标签最多10个字符)

常用:

提示

X
您的留言已提交成功!我们将在第一时间回复您~
在线留言