江苏信仪自动化仪表有限公司
免费会员
温压补偿涡街流量计
空气流量计
喷嘴流量计
流量计
空气流量计 标准孔板流量计 喷嘴流量计 温压补偿涡街流量计 智能金属管浮子流量计 手持式超声波流量计 电磁流量计 涡街流量计 涡轮流量计 超声波流量计 V锥流量计 金属管浮子流量计 均速管流量计 威力巴流量计 电池供电超声波流量计 靶式流量计 数显流量计 流量计、数显流量计 气体流量计、液体流量计、蒸汽流量计 江苏信仪仪表厂家流量计、智能流量计、液体流量计 江苏信仪厂家供应智能 电磁流量计 流量计 手持式超声波流量计,体积小重量轻易于携带非接触介质测量 涡街流量计 /温压补偿式流量计/ 智能涡街流量计/ 插入式涡街流量计 流量计、硫酸电磁流量计 、砂浆水泥电磁流量计 电磁流量计、柴油流量计、汽油流量计、机油流量计 电磁流量计/插入式电磁流量计/分体式电磁流量计 智能超声波流量计/管段式超声波流量计 智能涡街流量计、涡街流量传感器 水蒸汽流量计/饱和蒸汽流量计 DN15-300电池供电超声波流量计 安全型金属管浮子流量计 普通型金属管浮子流量计 高压透镜垫孔板 苯流量计 渣油流量计 金属管浮子流量计(左进右出) 管段式超声波流量计 管道流量计 侧装金属管浮子流量计 小口径水平型金属管浮子流量计 小油量油流量计 重油流量计 石油流量计 汽油流量计 燃油流量计 原油流量计 液压油流量计 汽油*流量计 柴油*流量计 食用油流量计 液体涡轮流量传感器 气体智能涡轮流量计 一体输出型涡街流量计 分体智能型涡街流量计LUG 电磁水表 污水流量计 盐酸流量计 水煤浆流量计 水平型金属管浮子流量计 防爆型金属管浮子流量计 高压电磁流量计 XY旋进旋涡流量计 XY涡街流计量 XY电磁流量计 偏心孔板流量计 圆形孔板流量计 角接钻孔取压孔板流量计 角接环室取压孔板流量计 径距取压孔板流量计 煤碳旋进旋涡气体流量计 冶金旋进旋出气体流量计 化工旋进旋涡气体流量计 石油旋进旋涡气体流量计 低流速金属管浮子流量计 小流量金属管浮子流量计 一般汽体涡街流量计 饱和蒸汽涡街流量计 过热蒸汽涡街流量计 一体式电磁流量计 分体式电磁流量计 纸浆电磁流量计 矿浆电磁流量计 盐溶液电磁流量计 酸碱电磁流量计 洁净水电磁流量计 智能型防腐电磁流量计 金属转子流量计 插入式电磁流量计 环形孔板流量计 管道式有机玻璃转子流量计 智能靶式流量计 插入式靶式流量计 插入式热式气体质量流量计 标准孔板 智能电磁流量计 热式气体质量流量计 便携式超声波流量计 蒸汽涡街流量计 面板式有机玻璃流量计 椭圆齿轮流量计 旋进旋涡气体流量计 腰轮流量计 玻璃转子流量计
变送器仪表
配电器
隔离器
安全栅
压力仪表
电线电缆
显示仪表
校验仪表
液位仪表
温度仪表

阻力件对流量测量准确度的影响

时间:2011-4-21阅读:1284
分享:

(1) 弯头

在工艺流程中,为改变方向或高度常采用弯头,是zui常见的一种管道阻力件,无论是充分发展紊流或“自由流动” (从大气汲入)通过弯头后,流动都将变得较为复杂,流速分布不再对称于轴心,且伴有漩涡(如方管还有二次流),对流量测量准确度的影响主要取决于弯头的曲率半径及流速的大小。

当流体流经弯管时,将发生离心力,外壁压力增大流速下降;内壁压力减小流速上升,而自弯头流向直管时,流动的效应相反,外侧流速加大,内侧流速减小,同时由于流体 流动的惯性,在内侧将产生较大的漩涡区,外侧形成较小的漩涡区(如图1)。

当弯头曲率半径减小,或管径增大时,分离的效应将增 强,在弯头1/3处,流动加剧恶化,但在流体粘性的作用下, 漩涡将逐渐弱化,流速分布将趋于均衡,约10D后基本改善流动情况。因而,在单弯头后10D之内,不宜安装流量仪表。

多弯头组合:上述情况是单弯头前为充分发展紊流,在 工业现场是很少见的。常见的是多个弯头或弯头与其他阻 力件的组合,所以仅做几个单头试验远远不能解决非充分 发展紊流的问题。这种复杂的组合,加大了二次流、漩涡 及离心力的强度,流动会更加恶化,管道越大(D>400mm)改善越困难。据专业人士估计,直管段长度至少应大于20D, 否则准确度很难达到5%。加大弯头之间的间距有可能弱化相互的影响,专业人士建议,二个弯头之间的距离不应小于5D。

(2) 变径管

为了改变工艺管道的口径通常采用变径管,主要有扩管及缩管两种形式。长期以来它对流场的影响一视同仁,未加区别(如美国API ANSI 1991-1999)。但笔者认为,缩管如果处理适当不仅不至于破坏流场,而且可以消除漩涡、改善流场,现对以下两种情况进行讨论:

突变管:即管径的改变没有过渡,突然地扩大(如图2)或 突然缩小,都将产生漩涡,破坏流场,管径变化越大,破坏性越强。

渐变管:一是渐扩管,流体通过渐扩管是一个动能转化 为位能的过程,如扩张角不超过10°,这个转变是渐变稳定的,流体不会分离,也不会产生较大压损,如文丘利的扩张段。但工艺上往往不允许有如此长的扩张段,特别是当管径较大时,尤为突出;二是渐缩管,流体通过渐缩管是一个位能转变为动能的过程,较易实现。以致收缩角大至60°都不会产生分离(如文丘利管的进口),而且还会消除漩涡改善流 场,不少厂家已认识到这点,并利用它作为一种成本低、效率高的整流器,如文丘利涡街流量计、艾伯特流量计,美国 康乐创的气体超声波流量计,等等。据资料,上述后者对流量仪表准确度的影响将较前者可大到约20倍。

(3) 阀门

在流程工业中通常采用阀门来改变流量的大小。阀门的形式多样,是一个较复杂的阻力件,不仅给流动带来漩涡,而且恶化流速分布(如图3)。相当多的阀门在使用中都不是处 于全开的状况,开度越小,恶化流场越严重。而且,在流体的控制中阀门往往作为一个降压装置,使流体产生压损,压力急剧下降,还容易产生空穴,进一步增加流量仪表的误差及危害。

鉴于上述原因,在工艺布局上,应尽可能地将阀门安排在流量仪表的下游;如必需安排在上游,则流量仪表距离阀门至少应有5D以上的直管段长度,如无法保证,则可将阀门安排在管道的旁路上,而在安装流量仪表的主管道上游安装 一个干扰较小的球阀或梭式阀。专业人士特别提醒要小心地安排流量仪表与阀门之间的相对位置,否则会引起无法容忍的测量误差。

(4) 歧管

在流程工业中,如从主管道流出一部分流体或有一部分流体从外流入主管道都要采用歧管。一般来说前者对流场的影响将小于后者,当然这种影响还取决流入或流出流体的流 量与主管道流量的比例,比例越小影响也越小。当流体从歧管流入主管道时往往不可避免地和主管道的流动产生漩涡并恶化流速分布,直到两种流体*混合为止。如必需确保 流量准确度,流量仪表应尽量避开歧管,或加长上游直管段长度。

上述介绍仅为几种典型的阻力件,在现场应用中,形形色色的阻力件会根据工艺要求,以各种方式组合起来,形成各种流动形式,对流量仪表的影响,也很难通过试验来加以规范修正。当前标准化组织(ISOTC30) 还是建议采用整流 器(或称流动调整器),以便在不长的直管段长度获得较为理想的流场,让流量仪表保持较高准确度。

会员登录

×

请输入账号

请输入密码

=

请输验证码

收藏该商铺

X
该信息已收藏!
标签:
保存成功

(空格分隔,最多3个,单个标签最多10个字符)

常用:

提示

X
您的留言已提交成功!我们将在第一时间回复您~
在线留言