深圳市日图科技有限公司
阅读:299发布时间:2017-9-26
3测试开关电源引起的EMI问题
时间:2012 年11 月16 日
地点:华北电力大学
待测试设备:某电子设备电路板
测试仪器:泰克MDO4104-6 + BNC 电缆
面临的问题:
该电子设备电路板为直径15 厘米的圆形,放置于金属屏蔽壳内,EMC 认证没有问题,但该设备自身工作并不正常,怀疑是开关电源纹波造成的影响。由于开关电源纹波的频率通常很低,传统的测试方法是用示波器监测电源波形,并对该波形进行FFT 运算以显示电源纹波的频谱。由于示波器FFT 所运算的频谱,其跨度受制于示波器的时基,而且动态范围远低于频谱仪,因此测试效果并不理想,没有确认电源纹波问题。由于MDO 是示波器与频谱仪的结合,客户便决定拿MDO 再次测试。
实测过程:
首先测试该电路板+5V 电源纹波,MDO 示波器通道1直接连接在+5V,用交流耦合测试纹波。为了对比,用BNC 电缆一端连接MDO50 欧姆射频输入端,另一端剥开外皮直接连接到+5V 上,设置中心频率为2.5MHz,跨度为5MHz。测试结果如下图:
由测试结果可知,该电源纹波达20mV 左右,其频谱在低频段达-50dBm 左右。为了看清电源纹波的影响,我们在示波器端做FFT,同时将频谱仪的跨度设定为50MHz,测试结果如下:
从测试结果可知,示波器功能的FFT 所显示的频谱与频谱仪5MHz 跨度频谱类似,但并不能看出什么问题,而此图中的频谱显示,该+5V 电源纹波的占用带宽一直延续到16MHz,因此对该设备影响严重。由此找到该设备工作不正常的真正原因。
案例总结:
本案在测试电源纹波时,用示波器的同时,也应用了频谱仪。灵活设置频谱仪的跨度,可轻松测试电源纹波在频域中的占用带宽,MDO 集示波器和频谱仪功能于一身,可将时域与频域联合显示,非常适于此类应用。
4底线布局不合理的EMI 问题
时间:2012 年11 月16 日
地点:华北电力大学
待测试设备:某电子设备电路板
测试仪器:泰克MDO4104-6 + BNC 电缆
面临的问题:
在找到案例三中的问题后,我们立刻想到,既然电源纹波会影响设备性能,地线上是否也会由于布线不合理而存在该开关电源纹波造成的EMI 问题?为此我们做进一步测试。
实测过程:
将示波器探头接到该电路板地线,同时将BNC 电缆也接到地线,为观测地线的EMI,我们测试1GHz 跨度的频谱,测试波形如下:
由此图示波器波形可知,该电路板地线上很不干净,zui大纹波月20mV。在上图下半部分的频谱图中,发现较严重的EMI 问题,几乎在这个1GHz 跨度内都存在。从频谱曲线的形状可以判断,该地线上既存在开关电源造成的EMI 同时也存在时钟泄露造成的EMI 问题,因为在频谱曲线上有类似方波的谐波成分。通过测试谐波分量的频谱间隔,可以轻松测试该时钟泄露频率为25MHz。由与EMI 问题遍布整个跨度,为了测试EMI zui严重的频段,我们将MDO 频谱仪跨度降低为500MHz,RBW 设置为5M,得到如下测试结果:
由测试结果可知,该地线在105MHz 和227.5MHz 两处EMI 幅度较高,利用MDO 跨域分析功能,在上半部分时域曲线中,橙色条位置为下半部分频谱分析时间段,此时该时间段位于距触发点1.02uS 处,即地线上较宽的波形处。我们向左调整频谱分析时间段,得到如下测试结果:
此时,频谱分析时间段位于距触发点730nS 处,即地线上较短的波形处,可知该处产生227.5MHz 的EMI干扰。再调整频谱分析时间段至地线杂波较宽处,即距触发点1.1uS 处,得到测试结果如下:
由测试结果可知,此处地线上的纹波产生105MHz 处的EMI。通过以上跨域分析,我们可以找到EMI 产生的根本原因。
案例总结:
本案在测试地线上的纹波时,在用示波器的同时,也应用了频谱仪,可以轻松发现EMI 问题。灵活设置频谱仪RBW,利用MDO *的跨域分析功能,可轻松查找某个频段的EMI 产生的根源。
仪表网 设计制作,未经允许翻录必究 .
请输入账号
请输入密码
请输验证码
请输入你感兴趣的产品
请简单描述您的需求
请选择省份