无锡市昌林自动化科技有限公司
免费会员
油研型威格士阀
电液换向阀 叠加阀 DGMC叠加式溢流阀 叠加式液控单向阀 DGMDC叠加式单向阀 CG2V溢流阀 CG5V电磁溢流阀 DSHG电液换向阀 DSG电磁换向阀 DG4V-3S电磁换向阀 DG5S-H8电液换向阀 DG4V-5电磁换向阀 DG4V-3电磁换向阀 DG5V-7电液换向阀 电磁换向阀 电液阀 DSA电液换向阀 WD电液换向阀 MTC叠加式单向节流阀 MPC叠加式液控单向阀 MC叠加式单向阀 MPR叠加式减压阀 HD手动换向阀 SW电液换向阀 DG电液换向阀 DSV-G03电磁换向阀 DSD-G03油压电磁阀 KSO电磁换向阀 DG05电磁换向阀 DSD电磁换向阀 DSV电磁换向阀 DG03电磁换向阀 电磁切换阀 HD电磁切换阀 HD方向切换阀 MB叠加式溢流阀 RF直动式溢流 CI直角单向阀 MCV叠加式单向阀 D5型电磁换向阀 D4型电磁换向阀 SWH电磁换向阀 中低压阀部分阀 PD压力继电器
海门型式列阀
高压截止球阀
离合器电磁铁
液压辅助元件
YWZ液位温计 CYW传感式液位液温计 PT微型高压测压接头 过滤器用污染物堵塞发讯器 YKJD液位控制继电器 XU-C系列线隙式中压管路过滤器 GU-H自封式压力管路过滤器 ZU/QU压力管路过滤器 PLF压力管路过滤器 GP/WY磁性回油过滤器 NXQ蓄能器 EF液压空气滤清器 C/D空气滤清器 SRFA双筒微型直回式回油过滤器 SRFB双筒直回式回油过滤器 双筒回油过滤器 SRLF双筒回油管路过滤器 SDRLF大流量双筒回油过滤器 回油过滤器 RFA微型直回式 RFB直回式回油过滤器 YLH箱上回油过滤器 XNL箱内回油过滤器 GLC列管式冷却器 TJ冷却器 RLF回油管路过滤器 WU/XU吸油过滤器 WF吸油过滤器 TF箱外自封式吸油过滤器 TFA吸油过滤器(新型) YCX自封式式箱侧吸油过滤器 NJU箱外内积式吸油过滤器 XNJ箱内吸油过滤器
油泵齿轮泵类
液压制动器类
上海联合设计型
力士乐型液压阀
广研型液压阀
气缸系列
电磁阀气控阀
SMC电磁阀 SYJ7电磁阀 SNS电磁阀 2WB常闭式二口二位电磁阀 2WK常开式二口二位电磁阀 SY3电磁阀 SY9电磁阀 SY7电磁阀 二位二通换向阀 K25JD截止阀(联合设计型) K23JD截止阀(联合设计型) K35滑柱式换向阀 K滑柱式换向阀 3K不供油滑柱式电气换向阀 K25J二位三通换向阀 K23JD2二位三通换向阀 QY气液电磁阀 Q24JD二位四通电磁阀 Q23JD二位四通电磁阀 QF25ZD二位五通电磁阀 Q24DH换向阀 Q滑板式电磁阀 09膜片阀 ZF角座阀 YJZF多介质角座阀 TG气控阀 TG电磁阀 FT气控阀 FG电磁阀 2W电磁阀 KL523高压高温电磁阀 MVSD460电磁阀 MVSD-300电磁阀 MVSD260电磁阀 MVSD220电磁阀 MVSD180电磁阀 DQK电控换向阀 AG/GAG多用途电磁阀 AB/GAB多用途电磁阀 QDI电控换向阀 QDA电控换向阀 电控换向阀 DDC真空电磁阀 SG4V电磁阀 K23D二位三通微型电磁阀 Q23DI电磁先导阀 K25D隔爆电控阀 BK23D防爆二位三通电磁阀 FDF制冷电磁阀 SR530电控换向阀 SR340电控换向阀 SR330电控换向阀 SR561电控换向阀 SR551电控换向阀 SR350电控换向阀 SR550电控换向阀 SR540电控换向阀 SR361电控换向阀
气动接头大全
人控阀机控阀
橡胶机械用气动
压力控制器
流量仪表系列
气动辅助元件
变送器执行器系列
液位控制器系列
代理品牌系列
阀门大全

离心泵调节方式与能耗分析

时间:2012-7-28阅读:284
分享:



     离心泵是广泛应用于化工工业系统的一种通用流体机械。它具有性能适应范围广(包括流量、压头及对输送介质性质的适应性)、体积小、结构简单、操作容易、操作费用低等诸多优点。通常,所选离心泵的流量、压头可能会和管路中要求的不一致,或由于生产任务、工艺要求发生变化,此时都要求对泵进行流量调节,实质是改变离心泵的工作点。离心泵的工作点是由泵的特性曲线和管路系统特性曲线共同决定的,因此,改变任何一个的特性曲线都可以达到流量调节的目的。目前,离心泵的流量调节方式主要有调节阀控制、变速控制以及泵的并、串联调节等。由于各种调节方式的原理不同,除有自己的优缺点外,造成的能量损耗也不一样,为了寻求*、能耗zui小、zui节能的流量调节方式,必须全面地了解离心泵的流量调节方式与能耗之间的关系。

  1.泵流量调节的主要方式
  1.1改变管路特性曲线
  改变离心泵流量zui简单的方法就是利用泵出口阀门的开度来控制,其实质是改变管路特性曲线的位置来改变泵的工作点。

  1.2改变离心泵特性曲线
  根据比例定律和切割定律,改变泵的转速、改变泵结构(如切削叶轮外径法等)两种方法都能改变离心泵的特性曲线,从而达到调节流量(同时改变压头)的目的。但是对于已经工作的泵,改变泵结构的方法不太方便,并且由于改变了泵的结构,降低了泵的通用性,尽管它在某些时候调节流量经济方便1,在生产中也很少采用。这里仅分析改变离心泵的转速调节流量的方法。当改变泵转速调节流量从Q1下降到Q2时,泵的转速(或电机转速)从n1下降到n2,转速为n2下泵的特性曲线Q-H与管路特性曲线He=H0+G1Qe2(管路特曲线不变化)交于点A3(Q2,H3),点A3为通过调速调节流量后新的工作点。此调节方法调节效果明显、快捷、安全可靠,可以延长泵使用寿命,节约电能,另外降低转速运行还能有效的降低离心泵的汽蚀余量NPSHr,使泵远离汽蚀区,减小离心泵发生汽蚀的可能性2。缺点是改变泵的转速需要有通过变频技术来改变原动机(通常是电动机)的转速,原理复杂,投资较大,且流量调节范围小。
    1.3泵的串、并连调节方式
  当单台离心泵不能满足输送任务时,可以采用离心泵的并联或串联操作。用两台相同型号的离心泵并联,虽然压头变化不大,但加大了总的输送流量,并联泵的总效率与单台泵的效率相同;离心泵串联时总的压头增大,流量变化不大,串联泵的总效率与单台泵效率相同。

  2.不同调节方式下泵的能耗分析
  在对不同调节方式下的能耗分析时,文章仅针对目前广泛采用的阀门调节和泵变转速调节两种调节方式加以分析。由于离心泵的并、串联操作目的在于提高压头或流量,在化工领域运用不多,其能耗可以结合图2进行分析,方法基本相同。

  2.1阀门调节流量时的功耗
  离心泵运行时,电动机输入泵轴的功率N为:
  N=vQH/η
  式中N——轴功率,w;
  Q——泵的有效压头,m;
  H——泵的实际流量,m3/s;
  v——流体比重,N/m3;
  η——泵的效率。

  当用阀门调节流量从Q1到Q2,在工作点A2消耗的轴功率为:
  NA2=vQ2H2/η
  vQ2H3——实际有用功率,W;
  vQ2(H2-H3)——阀门上损耗得功率,W;
  vQ2H2(1/η-1)——离心泵损失的功率,W。

  2.2变速调节流量时的功耗
  在进行变速分析时因要用到离心泵的比例定律,根据其应用条件,以下分析均指离心泵的变速范围在±20%内,且离心泵本身效率的变化不大3。用电动机变速调节流量到流量Q2时,在工作点A3泵消耗的轴功率为:
  NA3=vQ2H3/η
  同样经变换可得:
  NA3=vQ2H3+vQ2H3(1/η-1)(2)
  式中vQ2H3——实际有用功率,W;
  vQ2H3(1/η-1)——离心泵损失的功率,W。
  2.3能耗对比分析

  3.结论
  对于目前离心泵通用的出口阀门调节和泵变转速调节两种主要流量调节方式,泵变转速调节节约的能耗比出口阀门调节大得多,这点可以从两者的功耗分析和功耗对比分析看出。通过离心泵的流量与扬程的关系图,可以更为直观的反映出两种调节方式下的能耗关系。通过泵变速调节来减小流量还有利于降低离心泵发生汽蚀的可能性。当流量减小越大时,变速调节的节能效率也越大,即阀门调节损耗功率越大,但是,泵变速过大时又会造成泵效率降低,超出泵比例定律范围,因此,在实际应用时应该从多方面考虑,在二者之间综合出*的流量调节方法。  

会员登录

×

请输入账号

请输入密码

=

请输验证码

收藏该商铺

X
该信息已收藏!
标签:
保存成功

(空格分隔,最多3个,单个标签最多10个字符)

常用:

提示

X
您的留言已提交成功!我们将在第一时间回复您~
在线留言