涂建国
一.产品简介:
大型变配电站进行大型GIS检修时或SF6开关检修时,都需要对GIS系统中的SF6气体先进行回收,然后才能打开装置进行检修,但是在检修过重中,SF6气体的回收和净化都需要一方便可移动设备方便现场操作,本公司设计小型SF6回收净化装置方便电工维修人员使用。SF6气体作为一种绝缘气体,具有无毒、不可燃,以及良好的绝缘特性,其绝缘强度大大高于传统的绝缘气体,并具有良好的灭弧性,因此广泛应用于SF6电器。由于SF6气体价格昂贵,且在电弧、电火花和电晕放电的作用下,会分解产生有毒成份。因此SF6电器设备应用时需要将SF6气体回收。武汉华顶电力设备有限公司生产的HDQH-4/20型SF6气体回收充放装置就是为了制造和维修SF6电器设备时,回收和充加SF6气体的一种理想设备。
二.技术参数:
1、回收
回收初压力≤0.8MPa
回收终压力≤50KPa
回收时间:对初压力0.8MPa的1 m3 SF6气体容积,回收至终压力50KPa,回收时间小于2.5小时。
2、充气
对初压力为133Pa的1 m3 SF6气体容积充至0.8MPa,充气时间小于0.8小时。
3、抽真空
装置极限真空度小于等于10 Pa
对初压力为0.1MPa的1 m3 SF6气体容积抽真空至133Pa所需时间小于1.0小时。
4、贮存
贮存容器容积0.015m3(可根据现场要求进行定制大小)
名义液态贮存量20kg
贮存压力3.8 MPa
5、净化
对含水量1000PPM(体积比)以下的SF6气体,经本装置一次回收净化后,水份小于60PPM(重量比),油份小于10PPM(重量比)
6、年泄漏率≤1%名义储存量
7、噪声≤75dB(A)声压级
8、工作环境温度 -10°—40℃
9、功率≤4.5KW
10、电源:交流三相五线制 50HZ 380V±10%
11、重量约300 kg
12、外形尺寸(长×宽×高):1360×800×1300
三.工作原理:
HDQH-4/20型SF6气体回收充放装置具有回收、充放、净化、抽真空、贮存、灌瓶等综合性功能,系统比较*。气体的回收功能可串联或切换主要通过操作集中于面板一侧的电控箱和球阀来改变气路的流向方式完成。
HDQH-4/20sf6回收装置的基本工作原理是采用冷冻液化法。在回收时,利用压缩机的抽吸性和压缩性把SF6电器设备内一定压力的SF6气体吸入压缩机,并压缩至某一较高的压力。同时利用R22制冷剂的低蒸发温度特性,将较高温度的SF6气体冷却至冷凝温度进行液化、贮存。这样连续抽吸至SF6压缩机串联运行,直至达到回收终压力。
在充放时,首先利用本装置的真空泵对SF6电器设备(或钢瓶)和连接管路进行抽真空,然后直接利用压差或利用压缩机的抽吸性并造成一定的压差将装置贮存容器内的SF6充入SF6电器设备,直至达到所需的工作压力。在需灌瓶时则同时利用如前所述的R22制冷剂的特性,将液化的SF6直接灌入钢瓶。
净化功能是在完成上述回收、充放功能时同步完成的。
系统中设置了三只油分离器,分别安装在真空泵出口一只及压缩机的出口二只,以有效去除SF6气体所带的油份。
系统回路中设置了干燥过滤器,以保证进入贮存容器的SF6的纯度并有效去除水份。过滤器带有加热再生装置,可在抽真空下加热再生,分子筛从而能反复使用。
系统中设有可靠的安全保护装置,高压压力控制器安装在SF6压缩机排气口,一旦排气压力超过限定值它会自动停止压缩机的 工作,待压力下降后再重新启动压缩机;安全阀安装在贮存容器上一旦超压安全阀自动打开排放气体,压力下降后自动关闭。
另外,系统中还设置了监视仪表和控制仪表共七只,其中真空计一只,安装在装置回收进气口,并在真空计前装置了DN8阀门,需要观察时打开即可;压力表五只,分别安装在回收进气口、SF6压缩机排气口、冷冻压缩机吸排气口和贮存容器上;冷冻系统上设置了一只温度计,利用温包感应SF6液体温度。
系统中真空泵的进口处装有电磁真空带充气阀,并与真空泵接在同一个电源上,当泵停止工作时,阀能自动将真空系统封闭,并将大气通过泵的进口充入泵腔,从而避免泵油逆流污染真空系统。
系统中的冷冻系统由高低压压力控制器整定冷冻压缩机的进出口压力。一旦超出限值范围将自行切断冷冻压缩机的工作,低压断开时待压力回升或高压断开时,待压力回落后,再重新启动压缩机。
总体结构,该装置采用手推移动式,可适应室内外正常环境条件下使用。本装置系统比较复杂,由真空泵、SF6压缩机、冷冻系统、贮存容器、管路、各种阀门、仪表及其他附件组成。
电控箱、操作阀门和监视仪表全部集中于一侧面板且有流程指示,因而使用时方便明了。
更多产品咨询请访问武汉华顶电力设备有限公司
负载损耗、短路阻抗的数值和允许偏差见附件1~附件6。
⒊⒍外施耐压试验
外施耐压试验应采用不小于80%额定频率的任一合适的频率,且波形尽可能接近于正弦波的单相交流电压进行
应测量电压的峰值,试验电压值应是测量电压的峰值除以2。
全电试验值应施加于被试绕组的所有连接在一起的端子与地之间,加压时间60s。试验时,其余绕组的所有端子、铁心、夹片、箱壳等连在一起接地。
根据GB1094.3-2003的规定,油浸电力变压器绕组的工频试验电压见下表:
0.5如果试验电压不出现突然下降,油变产品内部没有放电声,干变试验声音平稳无异 常,则试验合格。
⒊⒎感应耐压试验
在被试变压器的任意一组绕组上,施加该绕组额定电压的两倍作试验电压(对于自藕变压器允许高于两倍额定电压)。为了不使铁心中的磁通饱和,应使两倍以上额定频率的电源。试验持续的时间(s)按下式计算,但不得小于15s.
试验时间=120×额定频率/试验频率
试验应从不大于规定试验值的1/3的电压开始,并与测量相配合尽快地增加到试验值。试验完了,应将电压迅速地降低到试验值的1/3以下,然后切断电源。
如果试验电压不出现突然下降,试验电流不突然的增加,则试验合格。
⒊⒏油浸变压器试漏
详见《变压器试漏工艺守则》。 ⒊⒐局部放电测量(例行试验) ⒊⒐⒈概述
所有的干式变压器均应进行局部放电测量。测量应按GB 1094.3和GB/T 7534的规定进行。局部放电测量应在Um≥3.6KV的绕组上进行。
⒊⒐⒉基本测量线路(仅为典型线路) 局部放电试验用的基本测量线路见图1和图2。
1——低压绕组;2——高压绕组;3——测量仪器。1——低压绕组;
2——高压绕组,D或Y;3——测量仪器;4——开关。 图1 单相变压器局部放电试验的基本测量线路
图2 三相变压器局部放电试验的基本测量线路
图中C表示一台电压额定值合适的无局部放电的高压电容器(其电容值与校准发生器的电容C0相比应足够大)。该电容器与测量阻抗Zm串联,且与每个被试高压绕组端子相连接。
⒊⒐⒊ 测量线路的校准
在绕组内部和测量线路中,均会出现放电脉冲的衰减现象。校准按GB 1094.3的规定进行,将一台标准放电校准器所产生的模拟放电脉冲施加到变压器高压绕组端子上。为了方便,可使标准发生器的重复频率与变压器试验时所用电源频率的每半周中有一个脉冲相当。
⒊⒐⒋电压施加方式
局部放电测量应在所有绝缘试验项目完成后进行。根据变压器是单相还是三相结构,来决定其低压绕组是由单相电源还是三相电源供电。试验电压波形应尽可能是正弦波,且试验频率应适当地比额定频率高些,以免试验期间励磁电流过大。试验程序按22.4.1或22.4.2。
本试验应在所有的干式变压器上进行,施加电压方式见图3。图3 局部放电例行试验的施加电压方式
相间预加电压为1.8ur(ur为额定电压),加压时间为30s。然后不切断电源,将相间电压降至1.3 ur,保持3min,在此期间应进行局部放电测量。单相变压器
对于单相变压器,ur应视成都SF6气体回收充放装置工厂直销成都SF6气体回收充放装置工厂直销实际情况,为相间电压或相对地电压。施加电压方式按三相变压器。
对于三台单相变压器组成的三相变压器组,其试验要求应与三相变压器相同。 ⒊⒐⒌局部放电接受水平
局部放电水平的大值为10pC。
可能要对装有某些附件(如:避雷器)的变压器进行特殊考虑