山东博斯达环保科技有限公司
免费会员

当前位置:山东博斯达环保科技有限公司>>计生服务中心污水处理设备>> BSD丽江社区卫生废水综合处理设备-丽江仪表网-水处理

丽江社区卫生废水综合处理设备-丽江仪表网-水处理

参  考  价面议
具体成交价以合同协议为准

产品型号BSD

品       牌

厂商性质生产商

所  在  地潍坊市

联系方式:陈先生查看联系方式

更新时间:2018-07-13 10:30:46浏览次数:76次

联系我时,请告知来自 仪表网
产地 国产 加工定制
丽江社区卫生废水综合处理设备-丽江仪表网
社区地埋式一体化处理技术按工艺可分为生物接触氧化法、SBR、A/O及A2/O等。常用的A/O处理技术的原理是,在缺氧池中微生物将污水中的硝酸盐氮和亚硝酸盐氮还原成气态氮逸出,同时将难降解大分子有机物分解为小分子易降解物质,具有脱氮、水解和降解部分有机物的作用;在好氧池中,大部分有机物被微生物处理,并进入二沉池进行泥水分离,经消毒后排出。

丽江社区卫生废水综合处理设备-丽江仪表网

与传统脱氮工艺相比, 厌氧氨氧化工艺节省了62.5%曝气量、脱氮途径短、无需外加碳源、温室气体产量低, 成为目前前景的污水脱氮工艺.

  厌氧氨氧化菌适合处理高温、高氨氮污水, 而城市生活污水是典型的低温、低氨氮水质, 如何将厌氧氨氧化工艺应用于市政污水处理厂是*以来的难点.在国外, 厌氧氨氧化工艺已成功应用于污水处理厂中, 以处理垃圾渗滤液、消化上清液、养殖业废水等高氨氮废水, 而市政污水处理厂厌氧氨氧化工艺的研究仍处于小试阶段.国内, 厌氧氨氧化工艺主要局限于实验室研究, 在实际污水处理厂中*运行厌氧氨氧化工艺的报道鲜见.

  常温低氨氮环境中, 厌氧氨氧化工艺处理负荷低.通常认为, 常温驯化可以使厌氧氨氧化菌逐步适应低温环境.前人的研究在实验室内进行, 以人工配水为基质, 氨氮浓度为100~350 mg ·L-1, 运行温度为18~25℃, 且驯化时间较短.而实际生活污水成分复杂, 亚硝化后的生活污水氨氮浓度为10~25 mg ·L-1, 水温为10~24℃.因此, 在市政污水处理厂中, 研究*常低温驯化对厌氧氨氧化菌的影响有着重大的意义.

  基于此, 本研究在污水处理厂中, 将A/O除磷和亚硝化工艺串联作为预处理工艺, 以预处理后的生活污水为基质, 启动并*运行厌氧氨氧化工艺的小试, 分析*运行过程中厌氧氨氧化菌的活性.

  1 材料与方法 1.1 试验装置

  试验采用上向流生物滤柱反应器(图 1).装置由有机玻璃制成, 内径20 cm, 承托层装填5 cm, 滤料装填45 cm, 反应器有效容积为18 L.承托层采用粒径为4~8 mm的砾石填料, 滤料为直径5~10 mm的黑色火山岩.zui下端取样口距滤柱底部10 cm, 由下向上每隔25 cm设置一个取样口.反应器底部设曝气装置以进行反冲洗, 外部缠绕黑色保温棉以避光和保温.

 1.2 试验用水和接种污泥

  将A/O除磷和亚硝化工艺串联作为预处理工艺, 以预处理后的生活污水为厌氧氨氧化工艺的基质, 具体水质指标如表 1所示.

 反应器启动时接种4 L厌氧氨氧化絮状污泥, 污泥浓度为2 200 mg ·L-1.厌氧氨氧化絮状污泥来自于稳定运行的厌氧氨氧化SBR反应器, SBR反应器总氮去除率稳定在85%左右, 总氮去除负荷为0.5 kg ·(m3 ·d)-1.

  1.3 运行参数

  整个运行阶段, 进水基质及滤速保持不变, 运行所处的季节及进水温度如表 2所示.

  1.4 化学分析方法及反应速率的测定

  水样分析中NH4+-N测定采用纳氏试剂光度法, NO2--N采用N-(1-萘基)乙二胺光度法, NO3--N采用紫外分光光度法, COD采用快速测定仪, DO、pH和水温通过WTW便携测定仪测定, 其余水质指标的分析方法均采用国标方法.

  反应速率的测定:从反应器中取滤料, 刮下生物膜, 放入2个烧杯中, 分别测定30℃和15℃时的厌氧氨氧化反应速率, 代表高温厌氧氨氧化速率和低温厌氧氨氧化速率.烧杯设置机械搅拌, 氨氮和亚硝氮基质浓度为50 mg ·L-1, 使碱度与氨氮之比为5, pH为7.6~8.0, 整个运行过程中水中DO维持在0.3 mg ·L-1以下.

  2 结果与分析 2.1 厌氧氨氧化滤柱的启动

  春季进行厌氧氨氧化工艺的启动.反应器装填火山岩填料后, 接种3.5 L污泥浓度为2 200 mg ·L-1的厌氧氨氧化絮状污泥进行挂膜.挂膜阶段, 采用较低的水力负荷以减小对滤料表面微生物的冲击, 滤速定为0.10 m ·h-1.同时, 反应器出水进行收集并循环进水, 以减少厌氧氨氧化菌的流失.运行5 d后, 出水SS浓度小于20 mg ·L-1, 表明厌氧氨氧化菌已基本被截留在反应器中.此时反应器改为连续进水出水, 滤速提高到0.15 m ·h-1, HRT为3.3 h.

丽江社区卫生废水综合处理设备-丽江仪表网

 连续运行阶段反应器氨氮, 亚硝氮和硝氮变化如图 2所示, 进水温度及总氮去除率如图 3所示.为了研究脱氮途径, 引入厌氧氨氧化反应方程式, 如式(1)所示.厌氧氨氧化菌按1 :1.32的比例消耗氨氮和亚硝氮.厌氧氨氧化工艺生成的氮气量与硝氮量之比为8, 该值称为特征比.

  反应器改为连续进水出水的第1 d, 总氮去除率为13.8%.但亚硝氮氨氮消耗比为1.41, 特征比为28.17, 不满足厌氧氨氧化方程式.分析其原因, 可能是由于火山岩填料对基质的吸附作用.随着吸附达到饱和, 总氮去除率明显降低, 第4 d时, 总氮去除率由13.8%降低到5.2%.反应器继续运行, 氨氮和亚硝氮去除效果逐渐提高, 出水硝氮浓度逐步增加.第109 d时, 连续15 d氨氮和亚硝氮去除率大于90%, 总氮去除率大于70%, 亚硝氮氨氮消耗比稳定在1.17~1.26, 特征比稳定在8.76~10.21, 符合厌氧氨氧化反应方程式, 表明上向流厌氧氨氧化生物滤柱启动成功.

  Zekker等在20℃条件下以发酵厂高氨氮污水为基质, 历时186 d成功启动厌氧氨氧化工艺.进水温度20~25℃, 氨氮和亚硝氮基质浓度为30~50 mg ·L-1, Bao等在224 d启动厌氧氨氧化生物滤柱. Zhang等以含25~35 mg ·L-1氨氮和亚硝氮的配水为基质, 23℃条件下90 d成功启动厌氧氨氧化SBR反应器.与前人研究成果相比, 本试验以更低浓度的实际生活污水为基质, 在15.1~21.9℃的条件下, 成功启动厌氧氨氧化反应器, 较前人的研究成果有所进步.

  2.2 厌氧氨氧化滤柱的低温运行

  第153~244 d时, 反应器在秋季运行, 进水温度为12.6~18.9℃.温度在14℃以上时, 反应器氨氮、亚硝氮去除率大于95%, 温度小于14℃时, 氨氮和亚氮去除率明显降低.第245 d, 反应器运行进入冬季, 进水温度为10.2~14.3℃.由图 3可知, 反应器总氮去除率与进水温度密切相关.进水温度在10~12℃时, 总氮去除率为25%~60%.进水温度为12~14℃时, 总氮去除率为55%~75%.第245~334 d, 反应器zui大出水总氮浓度为30.1 mg ·L-1, 平均总氮去除率为54.3%.

  为了避免生物膜过度增殖导致滤柱堵塞, 第461 d对滤柱进行反冲洗.反冲洗时, 采用较大的水力负荷以达到削减生物膜厚度的目的.以气水联合的方式进行反冲洗, 气水比为3, 水冲强度为2.0 L ·(s ·m2)-1, 反冲洗时间为3 min.反冲洗后, 氨氮去除率从98.6%降低到59.7%, 亚硝氮去除率从97.3%降低为57.2%, 总氮去除率由78.4%降为48.1%.运行8 d后, 氨氮去除率恢复至90%以上, 总氮去除率提高到71%.相比于其他生物膜, 本试验厌氧氨氧化生物膜反冲洗后恢复速度较快.有研究表明, 成熟的厌氧氨氧化菌生物膜结构紧凑, 分泌较多的胞外多聚物, 对水力负荷冲击的抵抗能力强, 因此成熟厌氧氨氧化生物膜受反冲洗影响较小.

  第510~604 d, 运行季节为秋季, 进水温度为13.2~19.6℃, 反应器氨氮和亚硝氮去除率大于90%, 总氮去除率大于75%.相比于去年同期水平, 进水温度在14℃以下时, 依然有着良好的处理效果.第605 d, 运行再次进入冬季, 进水温度为10.1~14.7℃.进水温度在10~12℃时, 总氮去除率为50%~65%.进水温度为12~14℃时, 总氮去除率为70~80%.第605~695 d, 反应器zui大出水总氮浓度为19.7 mg ·L-1, 平均总氮去除率为69.7%.总氮去除率比去年同期相比增长了29%, 总氮去除负荷增长率为23%.

  Guillén等通过1 048 d的低温驯化, 提高了低温厌氧氨氧化工艺的处理效果. Trojanowicz等从低温驯化3 a的厌氧氨氧化反应器中取泥, 在低温时成功启动反应器并取得了良好的处理效果.前人的研究主要表明, *的低温驯化可以提高低温厌氧氨氧化菌活性, 但对于*驯化对厌氧氨氧化活性提高并未定量化.在本试验中, 从第245~334 d到第605~695 d, 历时1 a, 总氮去除负荷增长率为23%, *低温驯化明显地提高了反应器低温处理效果.

  2.3 生物学特性研究

  每个季节从反应器中取出滤料, 测定滤料生物量及反应速率, 结果如图 5所示.生物量单位以VSS/滤料计, 为mg ·g-1.

  第55~148 d, 进水温度为16.5~21.9℃, 反应器生物量从5.08 mg ·g-1增长到9.61 mg ·g-1, 增长幅度较大.第230~298 d, 进水温度为10.2~13.8℃, 生物量由10.20 mg ·g-1提高为11.38 mg ·g-1, 低温环境中生物量增长速度较慢, 表明温度对厌氧氨氧化菌生物膜的增长有较大影响.第461 d滤柱进行反冲洗, 生物量从14.96 mg ·g-1降低至8.01 mg ·g-1, 反冲洗可以有效地剪切生物膜,

丽江社区卫生废水综合处理设备-丽江仪表网

 

(1)絮凝法。絮凝处理是含油废水处理中常见的方法,并常与气浮法联合使用。常用的无机絮凝剂是铝盐和铁盐,近年来出现的无机高分子凝聚剂(如聚硫酸铁、聚氯化铝等)具有用量少、效率高的特点,而且使用时pH值也较宽。虽然无机絮凝剂的处理速度较快,但投药量大,污泥生成量多。zui近,有机高分子凝聚剂的研究发展很快,高宝玉等以环氧氯丙烷、二甲胺、乙二胺为原料合成了聚环氧氯丙烷一二甲胺,实验证明,它对含油废水有较好的除油效果,并且可以作为处理染料废水的脱色剂。但由于其药剂成本较无机絮凝剂更贵,目前,有机高分子絮凝剂在含油废水处理方面仍然主要是用作其他方法的辅助剂。如何将有机与无机絮凝剂通过多种方法进行复合,以提高处理效率并降低处理成本是值得研究的课题。

  (2)高级氧化法。在化学氧化法中,超临界水氧化技术因其快速、高效的优点,近年来得到了迅速发展,一些用其他方法不能有效除去的污染物,用超临界水氧化法能够处理到环境可接受的程度。其原理是将水体中有机污染物在超临界水中氧化分解为c0、HO等无害小分子化合物。王亮等在间歇式超临界水氧化反应装置上进行了含油废水的超临界水氧化实验。研究表明,超临界水氧化法是一种高效、快速的有机废弃物处理技术。光催化氧化降解法是目前研究处理含油废水的另一项氧化技术,半导体催化氧化法具有很强的化功能。陈士夫等利用空心玻璃球负载Ti0清除水面漂浮的油层,去除率达到90%以上;通入空气或是H2o还可以大大提高光催化的效果。方佑龄等用硅偶联剂将纳米TiO偶联在空心微球上,制得漂浮于水上的Ti0光催化剂,进行水面油膜污染物的光催化分解研究,去除率达到90%以上。

会员登录

×

请输入账号

请输入密码

=

请输验证码

收藏该商铺

X
该信息已收藏!
标签:
保存成功

(空格分隔,最多3个,单个标签最多10个字符)

常用:

提示

X
您的留言已提交成功!我们将在第一时间回复您~
在线留言