产品|公司|采购|招标

仪表网>全部分类> 分析检测 色谱仪 >气相色谱

返回产品中心

气相色谱

气相色谱

气相色谱(gas chromatography 简称GC)是二十世纪五十年代出现的一项重大科学技术成就。这是一种新的分离、分析技术,它在工业、农业、国防、建设、科学研究中都得到了广泛应用。气相色谱可分为气固色谱和气液色谱。1分类气相色谱可分为气固色谱和气液色谱。气固色谱指流动相是气体,固定相是固体物质的色谱分离方法。例如活性炭、硅胶等作固定相。气液色谱指流动相是气体,固定相是液体的色谱分离方法。例如在惰性材料硅藻土涂上一层角鲨烷,可以分离、测定纯乙烯中的微量甲烷、乙炔、丙烯、丙烷等杂质。2发展GC色

查看详情
气相色谱

精品推荐

加工定制: 更多 确定 多选 +
价格

-

在线购买

勾选此项,您可以进行网上采购支付
共找到1899条 气相色谱 产品信息
12345共60页1899条记录
返回首页
[{"ID":"1337","Title":"气相色谱","UserID":"0","UserName":"","Author":"何守柱","CompanyID":"0","CompanyName":"","HitNumber":"4","Detail":"

   气相色谱(gas chromatography 简称GC)是二十世纪五十年代出现的一项重大科学技术成就。这是一种新的分离、分析技术,它在工业、农业、国防、建设、科学研究中都得到了广泛应用。气相色谱可分为气固色谱和气液色谱。<\/span><\/p>$detailsplit$

1<\/strong>分类<\/h2>

<\/p>

气相色谱可分为气固色谱和气液色谱。气固色谱指流动相<\/a>是气体,固定相<\/a>是固体物质的色谱分离<\/a>方法。例如活性炭、硅胶等作固定相。气液色谱指流动相是气体,固定相是液体的色谱分离方法。例如在惰性材料硅藻土涂上一层角鲨烷<\/a>,可以分离、测定纯乙烯中的微量甲烷、乙炔<\/a>、丙烯<\/a>、丙烷等杂质。<\/p>

2<\/strong>发展<\/h2>

<\/span> <\/p>

GC色谱的发展与下面两个方面的发展是密不可分的。一是气相色谱分离技术的发展,二是其他学科和技术的发展。<\/p>

1952年James和Martin提出气液相色谱法<\/a>,同时也发明了个气相色谱检测器<\/a>。这是一个接在填充柱<\/a>出口的滴定<\/a>装置,用来检测脂肪酸的分离。用滴定溶液体积对时间做图,得到积分色谱图。以后,他们又发明了气体密度天平。1954年Ray提出热导计,开创了现代气相色谱检测器的时代。此后至1957年,是填充柱、TCD年代。<\/p>

1958年Gloay提出毛细管<\/a>,同年,Mcwillian和Harley同时发明了FID,Lovelock发明了氩电离<\/a>检测器(AID)使检测方法的灵敏度提高了2~3个数量级。<\/p>

20世纪60和70年代,由于气相色谱<\/a>技术的发展,柱效大为提高,环境科学等学科的发展,提出了痕量分析<\/a>的要求,又陆续出现了一些高灵敏度、高选择性的检测器<\/a>。如1960年Lovelock提出电子俘获检测器<\/a>(ECD);1966年Brody等发明了FPD;1974年Kolb和Bischoff提出了电加热的NPD;1976年美国HNU公司推出了实用的窗式光电离<\/a>检测器(PID)等。同时,由于电子技术的发展,原有的检测器在结构和电路上又作了重大的改进。如TCD出现了衡电流、衡热丝温度及衡热丝温度检测电路;ECD出现衡频率变电流、衡电流脉冲调制检测电路等,从而使性能又有所提高。<\/p>

20世纪80年代,由于弹性石英毛细管柱的快速广泛应用,对检测器<\/a>提出了体积小、响应快、灵敏度高、选择性好的要求,特别是计算机和软件的发展,使TCD、FID、ECD、和NPD的灵敏度和稳定性均有很大提高,TCD和ECD的池体积大大缩小。<\/p>

进入20世纪90年代,由于电子技术、计算机和软件的飞速发展使MSD生产成本和复杂性下降,以及稳定性和耐用性增加,从而成为通用的气相色谱检测器之一。其间出现了非放射性<\/a>的脉冲放电电子俘获检测器(PDECD)、脉冲放电氦电离检测器(PDHID)和脉冲放电光电离检测器(PDECD)以及集次三者为一体的脉冲放电检测器<\/a>(PDD),4年后,美国Varian公司推出了商品仪器,它比通常FPD灵敏度高100倍。另外,快速GC和全二维GC等快速分离技术的迅猛发展,促使快速GC检测方法逐渐成熟。<\/p>

3<\/strong>特点<\/h2>

<\/span> <\/p>

气相色谱法是指用气体作为流动相<\/a>的色谱法。由于样品在气相中传递速度快,因此样品组分<\/a>在流动相和固定相<\/a>之间可以瞬间地达到平衡。另外加上可选作固定相的物质很多,因此气相色谱法是一个分析速度快和分离效率<\/a>高的分离分析方法。近年来采用高灵敏选择性检测器<\/a>,使得它又具有分析灵敏度高、应用范围广等优点。<\/p>

4<\/strong>原理<\/h2>

<\/span> <\/p>

GC主要是利用物质的沸点、极性<\/a>及吸附性质的差异来实现混合物的分离,其过程如图气相分析流程图所示。<\/p>

待分析样品在汽化室<\/a>汽化后被惰性气体(即载气<\/a>,也叫流动相<\/a>)带入色谱柱<\/a>,柱内含有液体或固体固定相<\/a>,由于样品中各组分<\/a>的沸点、极性或吸附性能不同,每种组分都倾向于在流动相和固定相之间形成分配或吸附平衡<\/a>。但由于载气是流动的,这种平衡实际上很难建立起来。也正是由于载气的流动,使样品组分在运动中进行反复多次的分配或吸附/解吸附,结果是在载气中浓度大的组分先流出色谱柱,而在固定相中分配浓度大的组分后流出。当组分流出色谱柱后,立即进入检测器<\/a>。检测器能够将样品组分转变为电信号,而电信号的大小与被测组分的量或浓度成正比。当将这些信号放大<\/a>并记录下来时,就是气相色谱图<\/a>了。<\/p>

5<\/strong>组成<\/h2>

<\/span> <\/p>

气相色谱仪<\/a>由以下五大系统组成:气路系统<\/a>、进样系统<\/a>、分离系统、温控系统、检测记录系统。<\/p>

组分<\/a>能否分开,关键在于色谱柱<\/a>;分离后组分能否鉴定出来则在于检测器<\/a>,所以分离系统和检测系统是仪器的核心。<\/p>

6<\/strong>应用<\/h2>

 <\/p>

在石油化学工业<\/a>中大部分的原料和产品都可采用气相色谱法来分析;在电力部门中可用来检查变压器的潜伏性故障;在环境保护工作中可用来监测城市大气和水的质量;在农业上可用来监测农作物中残留的农药;在商业部门可用来检验及鉴定食品质量的好坏;在医学上可用来研究人体新陈代谢、生理机能;在临床上用于鉴别药物中毒或疾病类型;在宇宙舱中可用来自动监测飞船密封仓内的气体等等。<\/p>

色谱<\/a>实际上是俄国植物学家茨维特<\/a>(M.S.Tswett)在1901年首先发现的。1903 年3月,茨维特在华沙大学<\/a>的一次学术会议上所作的报告中正式提出“chromatography”(即色谱)一词,标志着色谱的诞生。他因此被提名为1917年诺贝尔化学奖<\/a>的候选人。当时茨维特研究的是液相色谱<\/a>(LC)的分离技术,气相色谱出现在20世纪40年代,英国人马丁(A.J.P.Martin)和辛格<\/a>(R.L.M.Synge)在研究分配色谱<\/a>理论的过程中,证实了气体作为色谱流动的可能性,并预言了GC的诞生。与此巧合的是,这两位科学家获得了当年的诺贝尔化学奖。尽管获奖成果是他们对分配色谱理论的贡献,但也有后人认为他们是因为GC而得奖的。这也从另一个方面说明了GC技术对整个化学发展的重要性。<\/p>

虽然GC的出现较LC晚了50年,但其在此后20多年的发展却是LC所望尘莫及的。从1955年台商品GC仪器的推出,到1958年毛细管<\/a>GC柱的问世;从毛细管GC理论的研究,到各种检测技术的应用,GC很快从实验室的研究技术变成了常规分析手段,几乎形成了色谱领域GC独领风骚的局面。1970年以来,电子技术,特别是计算机技术的发展,使得GC色谱技术如虎添翼,1979年弹性石英毛细管柱的出现更使GC上了一个新台阶。这些既是高科技发展的结果,又是现代工农业生产的要求使然。反过来,色谱技术又大大促进了现代物质文明的发展。在现代社会的方方面面,色谱技术均发挥着重要作用。从天上的航天飞机<\/a>,到水里游的航空母舰<\/a>,都用GC来监测船舱中的气体质量;从日常生活中的食品和化妆品,到各种化工生产的工艺控制和产品质量检验,从司法检验中的物质鉴定,到地质勘探<\/a>中的油气田<\/a>寻找,从疾病诊断、医药分析、到考古发掘、环境保护,GC技术的应用极为广泛。<\/p>

在石化分析中<\/h3>

<\/p>

在石油和石油化工分析<\/a>中,GC是非常重要的。从油田的勘探开发到油品<\/a>质量的控制,都离不开GC这种分析成本低、速度快、分离度和灵敏度高的方法。美国材料与分析协会(ASTM)已开发了、并继续开发各种用于石化分析的GC标准方法。GC在石化分析中的应用主要涉及以下几个方面:<\/p>

1.油气田勘探中的地球化学<\/a>分析;<\/p>

2.原油<\/a>分析;<\/p>

3.炼厂气分析;<\/p>

4.模拟蒸馏;<\/p>

5.油品分析;<\/p>

6.单质烃分析;<\/p>

7.含硫<\/a>和含氮化合物分析;<\/p>

8.汽油添加剂分析;<\/p>

9.脂肪烃<\/a>分析;<\/p>

10.芳烃分析;<\/p>

11.工艺过程色谱分析<\/a>。<\/p>

在环境分析中<\/h3>

随着社会经济和科学技术的发展,人类文明在飞速进步。另一方面,也对生态环境<\/a>造成了越来越严重的破坏,环境污染问题已经成为人类所面临的大挑战之一。世界各国都在努力控制和治理各种环境污染,比如美国环保署(EPA)和中国环保局已经颁布了大量的标准分析方法。GC在环境分析中的应用主要有以下几个方面:<\/p>

1. 大气污染<\/a>分析(有毒有害气体<\/a>,气体硫化物,氮氧化物<\/a>等);<\/p>

2. 饮用水分析(多环芳烃<\/a>、农药残留<\/a>、有机溶剂等);<\/p>

3. 水资源(包括淡水、海水和废水中的有机污染物);<\/p>

4. 土壤分析<\/a>(有机污染物<\/a>);<\/p>

5. 固体废弃物分析。<\/p>

在食品分析中<\/h3>

1.脂肪酸甲酯<\/a>分析;<\/p>

2.农药残留分析;<\/p>

3.香精<\/a>香料分析;<\/p>

4.食品添加剂分析;<\/p>

5.食品包装材料<\/a>中挥发物的分析。<\/p>

在医药分析中<\/h3>

1.雌三醇测定;<\/p>

2.尿中孕二醇<\/a>和孕三醇测定;<\/p>

3.尿中胆甾醇测定;<\/p>

4.儿茶酚胺<\/a>代谢产物的分析;<\/p>

5.血液中乙醇、麻醉剂以及氨基酸衍生物<\/a>的分析;<\/p>

6.血液中睾丸激素<\/a>的分析;<\/p>

7.某些挥发性药物的分析。<\/p>

物理化学研究中<\/h3>

1.比表面和吸附性能研究;<\/p>

2.溶液热力学<\/a>研究;<\/p>

3.蒸气压的测定;<\/p>

4.络合常数测定;<\/p>

5.反应动力学研究;<\/p>

6.维里系数测定。<\/p>

聚合物分析方面<\/h3>

1.单体分析;<\/p>

2.添加剂分析;<\/p>

3.共聚物<\/a>组成分析;<\/p>

4.聚合物结构表征;<\/p>

5.聚合物中的杂质分析;<\/p>

6.热稳定性<\/a>研究。<\/p>

7<\/strong>方法<\/h2>

顶空进样法<\/a>是气相色谱特有的一种进样方法<\/a>。适用于挥发<\/a>性大的组分<\/a>分析。测定时,精密称取标准溶液<\/a>和供试品溶液各3-5 ml分别置于容积为8 ml的顶空取样瓶中。将各瓶在60摄氏度的水浴中加热30-40 min,使残留溶剂挥发达到饱和,再用在同一水浴<\/a>中的空试管中加热的注射器<\/a>抽取顶空气适量(通常为1 ml)。进样,重复进样3次,按溶剂直接进样法进行计算与处理。<\/p>

顶空进样法使待测物挥发后进样,可免去样品萃取、浓集等步骤,还可避免供试品种非挥发组分对柱色谱<\/a>的污染,但要求待测物具有足够的挥发性<\/a>。<\/p>

顶空分析是通过样品<\/a>基质上方的气体成分来测定这些组分<\/a>在原样品中的含量。其基本理论依据是在一定条件下气相和凝聚相(液相和固相)之间存在着分配平衡。所以,气相的组成能反映凝聚相的组成。可以把顶空分析看作是一种气相萃取方法,即用气体做“溶剂”来萃取样品中的挥发性成分,因而,顶空分析就是一种理想的样品净化方法。传统的液液萃取以及SPE都是将样品溶在液体里,不可避免地会有一些共萃取物的干扰分析。况且溶剂本身的纯度也是一个问题,这在痕量分析<\/a>中尤为重要。而其做溶剂可避免不必要的干扰,因为高纯度气体很容易得到,且成本较低。这也是顶空气相被广泛采用的一个原因。<\/p>

作为一种分析方法,顶空分析首先简单,它只取气体部分进行分析,大大减少了样品本身可能对分析的干扰或污染。作为GC分析的样品处理方法,顶空是为简便的。其次,是可以使气化后进样,顶空分析有不同模式,可以通过优化操作参数而适合于各种样品。第三,顶空分析的灵敏度能够满足法规的要求。第四,顶空进样可相对的减少用于溶解样品的沸点较高的溶剂的进样量,缩短分析时间,但对溶剂的纯度要求较高,尤其不能含有低沸点的杂质,否则会严重干扰测定。后,与GC的定量分析<\/a>能力相结合,顶空GC完够进行准确的定量分析。<\/p>

过程<\/h3>

顶空GC通常包括三个过程,一是取样,二是进样,三是GC分析。<\/p>

类别<\/h3>

根据取样和进样方式的不同,顶空分析有动态和静态之分。所谓静态顶空就是将样品密封在一个容器中,在一定温度下放置一段时间使气液两相达到平衡。然后取气相部分带入GC分析。所以静态顶空GC又称为平衡顶空GC,或叫做一次气相萃取。如果再取第二次样,结果就会不同于次取样的分析结果,因为次取样后样品组分<\/a>已经发生了变化。与此不同的是连续气相萃取,即多次取样,直到样品中挥发性<\/a>组分完全萃取出来。这就是所谓的动态顶空GC。常用的方法是在样品<\/a>中连续通入惰性气体<\/a>,如氦气<\/a>,挥发性成分即随该萃取气体从样品中逸出,然后通过一个吸附装置(捕集器)将样品浓缩,后再将样品解析进入GC进行分析。这种方法通常被称为吹扫-捕集分析方法。<\/p>

8<\/strong>专业知识<\/h2>

气相色谱是一种以气体为流动相<\/a>的柱色谱法<\/a>,根据所用固定相状态的不同可分为气-固色谱(GSC)和气-液色谱(GLC)。<\/p>

2 气相色谱原理<\/p>

气相色谱的流动相为惰性气体,气-固色谱法<\/a>中以表面积大且具有一定活性的吸附剂作为固定相。当多组分<\/a>的混合样品进入色谱柱<\/a>后,由于吸附剂对每个组分的吸附力不同,经过一定时间后,各组分在色谱柱中的运行速度也就不同。吸附力弱的组分容易被解吸<\/a>下来,先离开色谱柱进入检测器<\/a>,而吸附力强的组分不容易被解吸下来,因此后离开色谱柱。如此,各组分得以在色谱柱中彼此分离,顺序进入检测器中被检测、记录下来。<\/p>

3 气相色谱流程<\/p>

载气<\/a>由高压钢瓶中流出,经减压阀降压到所需压力后,通过净化干燥管使载气净化,再经稳压阀和转子流量计后,以稳定的压力、恒定的速度流经气化室与气化的样品混合,将样品气体带入色谱柱中进行分离。分离后的各组分随着载气先后流入检测器,然后载气放空。检测器将物质的浓度或质量的变化转变为一定的电信号,经放大后在记录仪上记录下来,就得到色谱流出曲线。<\/p>

根据色谱流出曲线上得到的每个峰的保留时间,可以进行定性分析,根据峰面积或峰高的大小,可以进行定量分析<\/a>。<\/p>

4 气相色谱仪<\/a><\/p>

由以下五大系统组成:气路系统<\/a>、进样系统、分离系统、温控系统、检测记录系统。<\/p>

组分能否分开,关键在于色谱柱<\/a>;分离后组分能否鉴定出来则在于检测器<\/a>,所以分离系统和检测系统是仪器的核心。<\/p>

5 气相色谱仪几种常用检测器<\/p>

目前有很多种检测器,其中常用的检测器是:氢火焰离子化检测器<\/a>(FID) 热导检测器<\/a>(TCD) 氮磷检测器<\/a> (NPD)火焰光度检测器<\/a>(FPD) 电子捕获检测器<\/a>(ECD)等类型。<\/p>

氢火焰离子化检测器(FID):(氢)火焰离子化检测器是根据气体的导电率是与该气体中所含带电离子的浓度呈正比这一事实而设计的。一般情况下,组分蒸汽不导电,但在能源作用下,组分蒸汽可被电离生成带电离子而导电。<\/p>

工作原理:由色谱柱流出的载气(样品)流经温度高达2100℃的氢火焰时,待测有机物组分在火焰中发生离子化作用,使两个电极之间出现一定量的正、负离子,在电场的作用下,正、负离子各被相应电极所收集。当载气中不含待测物时,火焰中离子很少,即基流很小,约10-14A。当待测有机物通过检测器时,火焰中电离的离子增多,电流增大(但很微弱10-8~10-12A)。需经高电阻(108~l011)后得到较大的电压信号,再由放大器放大,才能在记录仪上显示出足够大的色谱峰。该电流的大小,在一定范围内与单位时间内进入检测器的待测组分的质量成正比,所以火焰离子化检测器是质量型检测器。<\/p>

火焰离子化检测器对电离势低于H2的有机物产生响应,而对无机物、久性气体和水基本上无响应,所以火焰离子化检测器只能分析有机物(含碳化合物),不适于分析惰性气体、空气、水、CO、CO2、CS2、NO、SO2及H2S等。<\/p>

热导检测器<\/a>(TCD):热导检测器(TCD)又称热导池或热丝检热器,是气相色谱法常用的一种检测器。基于不同组分与载气有不同的热导率的原理而工作的热传导检测器。<\/p>

工作原理:热导检测器的工作原理是基于不同气体具有不同的热导率。热丝具有电阻随温度变化的特性。当有一恒定直流电通过热导池时,热丝被加热。由于载气的热传导作用使热丝的一部分热量被载气带走,一部分传给池体。当热丝产生的热量与散失热量达到平衡时,热丝温度就稳定在一定数值。此时,热丝阻值也稳定在一定数值。由于参比池和测量池通入的都是纯载气,同一种载气有相同的热导率,因此两臂的电阻值相同,电桥平衡,无信号输出,记录系统记录的是一条直线。当有试样进入检测器时,纯载气流经参比池,载气携带着组分气流经测量池,由于载气和待测量组分二元混合气体的热导率和纯载气的热导率不同,测量池中散热情况因而发生变化,使参比池和测量池孔中热丝电阻值之间产生了差异,电桥失去平衡,检测器有电压信号输出,记录仪画出相应组分的色谱峰。载气中待测组分的浓度越大,测量池中气体热导率改变就越显著,温度和电阻值改变也越显著,电压信号就越强。此时输出的电压信号与样品的浓度成正比,这正是热导检测器的定量基础。<\/p>

热导池(TCD)检测器是一种通用的非破坏性浓度型检测器,一直是实际工作中应用多的气相色谱检测器之一。TCD特别适用于气体混合物的分析,对于那些氢火焰离子化检测器不能直接检测的无机气体的分析,TCD更是显示出独到之处。TCD在检测过程中不破坏被监测组份,有利于样品的收集,或与其他仪器联用。TCD能满足工业分析中峰高定量的要求,很适于工厂的控制分析。<\/p>

氮磷检测器<\/a> (NPD):氮磷检测器(NPD)是一种质量检测器,适用于分析氮,磷化合物的高灵敏度、高选择性检测器。它具有与FID相似的结构,只是将一种涂有碱金属盐如Na2SiO3,Rb2SiO3类化合物的陶瓷珠,放置在燃烧的氢火焰和收集极之间,当试样蒸气和氢气流通过碱金属盐表面时,含氮、磷的化合物便会从被还原的碱金属蒸气上获得电子,失去电子的碱金属形成盐再沉积到陶瓷珠的表面上。<\/p>

工作原理:是在NPD检测器的喷口上方, 有一个被大电流加热的铷珠, 碱金属盐( 铷珠) 受热而逸出少量离子, 铷珠上加有-250V 极化电压, 与圆筒形收集极形成直流电场,逸出的少量离子在直流电场作用下定向移动,形成微小电流被收集极收集,即为基流。当含氮或磷的有机化合物从色谱柱流出, 在铷珠的周围产生热离子化反应, 使碱金属盐( 铷珠) 的电离度大大提高, 产生的离子在直流电场作用下定向移动, 形成的微小电流被收集极收集, 再经微电流放大器将信号放大, 再由积分仪处理, 实现定性定量的分析。<\/p>

氮磷检测器的使用寿命长、灵敏度极高,可以检测到5×10-13<\/sup>g/s偶氮苯类含氮化合物,2.5×10-13<\/sup>g/s的含磷化合物,如马拉松农药。它对氮、磷化合物有较高的响应。而对其他化合物有的响应值低10000~100000倍。氮磷检测器被广泛应用于农药、石油、食品、药物、香料及临床医学等多个领域。<\/p>

火焰光度检测器<\/a>(FPD):火焰光度检测器是利用在一定外界条件下(即在富氢条件下燃烧)促使一些物质产生化学发光,通过波长选择、光信号接收,经放大把物质及其含量和特征的信号联系起来的一个装置。主要由燃烧室、单色器、光电倍增管、石英片(保护滤光片)及电源和放大器等组成。<\/p>

工作原理:当含S、P化合物进入氢焰离子室时,在富氢焰中燃烧,有机含硫化合物首先氧化成SO2,被氢还原成S原子后生成激发态的S2*分子,当其回到基态时,发射出350~430nm的特征分子光谱,大吸收波长为394nm。通过相应的滤光片,由光电倍增管接收,经放大后由记录仪记录其色谱峰。此检测器对含S化合物不成线性关系而呈对数关系(与含S化合物浓度的平方根成正比)。<\/p>

当含磷化合物氧化成磷的氧化物,被富氢焰中的H还原成HPO裂片,此裂片被激发后发射出480~600nm的特征分子光谱,大吸收波长为526nm。因发射光的强度(响应信号)正比于HPO浓度。<\/p>

电子捕获检测器<\/a>(ECD):早期电子捕获检测器由两个平行电极制成。现多用放射性同轴电极。在检测器池体内,装有一个不锈钢棒作为正极,一个圆筒状-放射源(3H、63Ni)作负极,两极间施加流电或脉冲电压。<\/p>

工作原理:当纯载气(通常用高纯N2<\/sub>)进入检测室时,受射线照射,电离产生正离子(N2<\/sub>+<\/sup>)和电子e-<\/sup>,生成的正离子和电子在电场作用下分别向两极运动,形成约10-8A的电流——基流。加入样品后,若样品中含有某中电负性强的元素即易于电子结合的分子时,就会捕获这些低能电子,产生带负电荷阴离子(电子捕获)这些阴离子和载气电离生成的正离子结合生成中性化合物,被载气带出检测室外,从而使基流降低,产生负信号,形成倒峰。倒峰大小(高低)与组分浓度呈正比,因此,电子捕获检测器是浓度型的检测器。其小检测浓度可达10-14g/ml,线性范围为103左右 。<\/p>

电子捕获检测器是一种高选择性检测器。高选择性是指只对含有电负性强的元素的物质,如含有卤素、S、P、N等的化合物等有响应.物质电负性越强,检测灵敏度越高。<\/p>$detailsplit$

参考资料编辑区域<\/p>$detailsplit$

1<\/span>分类<\/a><\/p>

2<\/span>发展<\/a><\/p>

3<\/span>特点<\/a><\/p>

4<\/span>原理<\/a><\/p>

5<\/span>组成<\/a><\/p><\/div>

6<\/span>应用<\/a><\/p>

.<\/i>在石化分析中<\/a><\/p>

.<\/i>在环境分析中<\/a><\/p>

.<\/i>在食品分析中<\/a><\/p>

.<\/i>在医药分析中<\/a><\/p>

.<\/i>物理化学研究中<\/a><\/p>

.<\/i>聚合物分析方面<\/a><\/p><\/div>

7<\/span>方法<\/a><\/p>

.<\/i>过程<\/a><\/p>

.<\/i>类别<\/a><\/p>

8<\/span>专业知识<\/a><\/p><\/div>$detailsplit$

1<\/span>分类<\/a><\/i><\/p>

2<\/span>发展<\/a><\/i><\/p>

3<\/span>特点<\/a><\/i><\/p>

4<\/span>原理<\/a><\/i><\/p>

5<\/span>组成<\/a><\/i><\/p>

6<\/span>应用<\/a><\/i><\/p>

6.1<\/span>在石化分析中<\/a><\/i><\/p>

6.2<\/span>在环境分析中<\/a><\/i><\/p>

6.3<\/span>在食品分析中<\/a><\/i><\/p>

6.4<\/span>在医药分析中<\/a><\/i><\/p>

6.5<\/span>物理化学研究中<\/a><\/i><\/p>

6.6<\/span>聚合物分析方面<\/a><\/i><\/p>

7<\/span>方法<\/a><\/i><\/p>

7.1<\/span>过程<\/a><\/i><\/p>

7.2<\/span>类别<\/a><\/i><\/p>

8<\/span>专业知识<\/a><\/i><\/p>","ClassID":"6891","Sort":"0","IsShow":"1","CreateTime":"2017/5/22 18:34:13","UpdateTime":"2017/5/22 18:34:13","RecommendNum":"0","Picture":"2/20170522/636310749995276629496.jpg","PictureDomain":"img59","ParentID":"1303","Other":[{"ID":"37","Title":"调节器","UserID":"0","UserName":"","Author":"马迎弟","CompanyID":"0","CompanyName":"","HitNumber":"20","Detail":"

将生产过程参数的测量值与给定值进行比较,得出偏差后根据一定的调节规律产生输出信号推动执行器消除偏差量,使该参数保持在给定值附近或按预定规律变化的控制器。<\/P>$detailsplit$

1<\/STRONG>简单描述编辑<\/H2>

调节器,基本释义:regulator<\/P>

adjuster<\/P>

governor<\/P>

controller<\/P>

conditioner就是一种通过各种方法和途径达到,改变某一参数,某个环境下需要的,一种仪器!<\/P>

日常的调速器,调档器,都是其中的一种,汽车和火车飞机,航天卫星等都用到调节器!<\/P>

<\/P>

2<\/STRONG>可编程<\/H2>

编程调节器<\/H3>

可编程调节器属<\/P>

可编程调节器<\/SPAN><\/P>

于调节器的一种,可编程调节器又称数字调节器或单回路调节器。它是以微处理器为核心部件的一种新型调节器。它的各种功能可以通过改变程序(编程)的方法来实现,故称为可编程调节器。<\/P>

特点<\/H3>

1、具有常规模拟仪表的安装的操作方式,可与模拟仪表兼容。<\/P>

2、具有丰富的运算处理功能。<\/P>

3、一机多能,可简化系统工程,缩小控制室盘面尺寸。<\/P>

4、具有完整的自诊断功能,安全可靠性高。<\/P>

5、编程方便,无须计算机软件即可操作,便于推广。<\/P>

6、通信接口能与计算机联机,扩展性好。<\/P>

作用<\/H3>

调节器是调节电压的装置,首先防止电压过高损坏电瓶,同时在发电机电压过低时切断与电瓶之间的线路,上面说的是直流发电机。假如是交流发电机则只有稳压功能。<\/P>

3<\/STRONG>原理<\/H2>

离心调节器<\/H3>

一些自动变速器中用到的重锤调节原理就是通常说的\"机械调节器\"或\"离心调节器\"的基本原理。明白了它的原理,对其它类似机械的原理也就清楚了,正所谓\"一理通百理明\"。<\/P>

机械装置示意图<\/SPAN><\/P>

图示一个利用重锤的离心作用来控制阀门开闭的机械装置示意图。两个蓝色的圆球是具有较大质量的重锤,红色的轴是旋转轴,整个机械是根据它的转速来进行控制的;黑色的小圆圈是允许相对转动的连接,就像眼镜框与眼镜脚之间的连接,是可以相对转动的;浅绿色的是滑块,它随旋转轴转动,同时可以相对旋转轴上下移动;滑块里面有条槽,嵌着一个滚子(橘黄色);阀门可以沿黑色的管道横截面方向上下移动,从而控制通过管道的流体的流量,阀门的位置受与滚子连接的几根橘黄色的连杆控制。<\/P>

原理<\/H3>

水平连杆上有小黑圈与黑色三角形相连,表示在那个地方与固定的机壳连接。 三角形折线代表弹簧,当旋转轴高速转动时,两个重锤在离心力作用下克服弹簧力向外运动,带动滑块向上运动,整个机械装置处于浅灰色位置,原来处于水平的连杆现在左边上升右边下降,驱动阀门向下移动,管道内的通道就被关小或完全封闭了。当旋转轴速度变慢时,两个重锤在弹簧力的作用下向内回动,阀门可以再次打开。有了这套装置,就可以利用速度来控制阀门的移动了。自动变速器液压自动换档系统的结构虽然与图示不同,但有关重锤的调节作用原理是相同的。<\/P>

<\/P>

4<\/STRONG>发电机<\/H2>

1、闭合电压的调整<\/P>

用一节干电池与蓄电池、电流表串联起来,接在调理器的蓄电池接线柱上。启动发起机并逐步升高转速,在截流器触点闭应时察看迁延机上电流表指针。若电流表指针向“+”偏向摆动,透露表现闭合电压高,应该削弱弹簧拉力;若电流表指针向“-”偏向摆动,则透露表现闭合电压低,应该增大弹簧拉力。就如许重复调整,直到截流器触点闭应时电流表指针简直不摆动,则透露表现闭合电压适宜。<\/P>

2、调压值的调整<\/P>

用两节干电池与蓄电池、电流表串联,接在调理器的蓄电池接线柱上。启动发起机,逐步升高转速。在调压器起效果时,察看电流表的指针。若电流表指针向“+”偏向摆动,透露表现调压值高,应削减弹簧拉力;若电流表指针向“-”偏向摆动,透露表现调压值低,应该增大弹簧拉力。如许重复调整,直到调压器起效果时,电流表指针简直不摆动,则透露表现调压值适宜。<\/P>

这种调整办法的道理是:干电池与蓄电池串联起来,有必然的电位,而发电机则宣布必然的电压,当两者不等时就要发生电流。前者电位高于后者,则电流表指针向“-”偏向,反之则向“+”偏向。只要两者电位差不多相等时,电流表指针才不摆动。<\/P>

调节器<\/SPAN><\/P>

<\/P>

5<\/STRONG>使用维护<\/H2>

调节器在使用过程中一般不允许拆卸护盖,正常情况是每工作200h左右进行一次全面检查和维护,其内容如下:<\/P>

1拆下护壳,检查触点表面有无污物和烧损。若有污物,可用较干净的纸擦拭触点表面。若触点出现烧蚀或平面不平而导致接触不良,一般用“00”号砂纸或砂条将其磨平,后再用干净的纸擦净。<\/P>

2检查各个接头的牢固程度,测量电阻和各个线圈的电阻值。若有损坏,应及时修复或更换新件。<\/P>

3检验断流器的闭合电压和逆电流、节压器的限额电压、节流器的限额电流以及各种触点的间隙和气隙。若不符合要求,应进行调整。<\/P>

4检查调整后的调节器,在起动柴油机<\/STRONG>时要注意观察充电电流表指针的指示。若柴油机以中等以上转速运转时电流表的指针仍指向“-”一边,这说明断流器的触点未断开,应迅速断开接地开关;否则,会损坏蓄电池、调节器和充电发电机等。若柴油机起动至额定转速后电流表的指针仍指向“0”处,说明的调整时未按技术要求进行调整,应重新进行检查和调整。<\/P>

调节器<\/SPAN><\/P>

6<\/STRONG>调整方法<\/H2>

柴油发电机组的调节器调整方法<\/P>

在柴油发电机组的使用过程中,经常会出现充电电流表指针不动、充电电流过大或过小等故障。若给蓄电池的充电电流过大,会使蓄电池的使用寿命缩短;过小则不能给蓄电池按时充电。在柴油机工作时,若查看到充电电流表显示的充电电流过大,就应对调节器的限流弹簧进行调节,使弹簧缩短,这时电流就会减小,反之则电流增大。调整位置如图12-22所示。在调节过程中注意用力不要过猛,应轻轻地触碰,直到符合要求为止<\/P>$detailsplit$

参考资料编辑区域<\/P>$detailsplit$

1<\/SPAN>简单描述编辑<\/A><\/P>

2<\/SPAN>可编程<\/A><\/P>

<\/I>编程调节器<\/A><\/P>

<\/I>特点<\/A><\/P>

<\/I>作用<\/A><\/P>

3<\/SPAN>原理<\/A><\/P><\/DIV>

<\/I>离心调节器<\/A><\/P>

<\/I>原理<\/A><\/P>

4<\/SPAN>发电机<\/A><\/P>

5<\/SPAN>使用维护<\/A><\/P>

6<\/SPAN>调整方法<\/A><\/P><\/DIV>$detailsplit$

1<\/SPAN>简单描述编辑<\/A><\/I><\/P>

2<\/SPAN>可编程<\/A><\/I><\/P>

2.1<\/SPAN>编程调节器<\/A><\/I><\/P>

2.2<\/SPAN>特点<\/A><\/I><\/P>

2.3<\/SPAN>作用<\/A><\/I><\/P>

3<\/SPAN>原理<\/A><\/I><\/P>

3.1<\/SPAN>离心调节器<\/A><\/I><\/P>

3.2<\/SPAN>原理<\/A><\/I><\/P>

4<\/SPAN>发电机<\/A><\/I><\/P>

5<\/SPAN>使用维护<\/A><\/I><\/P>

6<\/SPAN>调整方法<\/A><\/I><\/P>","ClassID":"6891","Sort":"0","IsShow":"1","CreateTime":"2015/4/14 10:55:35","UpdateTime":"2015/4/14 10:56:16","RecommendNum":"1","Picture":"2/20150414/635646056711285652131.jpg","PictureDomain":"img66","ParentID":"31"},{"ID":"39","Title":"巡检仪","UserID":"0","UserName":"","Author":"马迎弟","CompanyID":"0","CompanyName":"","HitNumber":"9","Detail":"

巡检仪是一种工业测控仪表,它可以与各类传感器、变送器配合使用,可对多路温度、压力、液位、流量、重量、电流、电压等工业过程参数进行巡回检测、报警控制、变送输出、数据采集及通讯。<\/P>$detailsplit$

1<\/STRONG>功能特点<\/H2>

输入功能<\/P>

自动校准和人工校准功能<\/P>

多重保护、隔离设计、抗干扰能力强、可靠性高<\/P>

巡检仪良好的软件平台,具备二次开发能力,以满足特殊的功能巡检仪先进的模块化结构,配合功能强大的仪表芯片,功能组合、系统升级非常方便<\/P>

自动巡检、手动定检可自由切换<\/P>

多种巡检仪<\/SPAN><\/P>

巡检通道切换时间及通道有效数可设定<\/P>

2<\/STRONG>主要技术指标<\/H2>

基本误差: 0.2%FS±1个字<\/P>

分 辨 力:1/20000、14位A/D转换器<\/P>

显示方式:双排四位LED数码管,上排显示测量值,下排显示通道号<\/P>

<\/P>

采样周期:0.5S<\/P>

报警输出: ⑴1-64通道统一上下限报警,继电器输出触点容量 AC220V/3A<\/P>

⑵1-8通道分别独立报警,继电器输出触点容量 AC220V/1A<\/P>

变送输出:通过开关量输入可选择相应通道带 4~20mA、0~10mA、1~5V、0~5V 隔离输出 精度:±0.3%FS<\/P>

通讯输出:接口方式--隔离串行双向通讯接口RS485/RS422/RS232/Modem<\/P>

波特率--300~9600bps内部自由设定<\/P>

电 源:开关电源 85~265VAC 功耗4W以下<\/P>

<\/P>

3<\/STRONG>巡检仪的选型<\/H2>

内容<\/P><\/TD>

代码及说明<\/P><\/TD>

 <\/TD><\/TR>
  <\/TD>

含8通道,2点公共报警<\/P><\/TD>

 <\/TD><\/TR>

外型尺寸<\/P><\/TD>

A—<\/P><\/TD>

横式160×84×182<\/P><\/TD><\/TR>

B—<\/P><\/TD>

竖式84×160×182<\/P><\/TD>

 <\/TD><\/TR>

C—<\/P><\/TD>

方形160×160×182<\/P><\/TD>

 <\/TD><\/TR>

D—<\/P><\/TD>

台式,盘装通用318×104×300<\/P><\/TD>

 <\/TD><\/TR>

通道数<\/P><\/TD>

□□<\/P><\/TD>

尺寸为A、B的仪表多32通道;尺寸为C、D的仪表多80通道<\/P><\/TD><\/TR>

输入信号<\/P>

(其它输入信号,订货时说明,注2)<\/P><\/TD>

R<\/P><\/TD>

全部通道均为热电阻,仪表内装的分度号包括:Pt100,Cu100,Cu50,BA1,BA2,G53<\/P><\/TD><\/TR>

E<\/P><\/TD>

全部通道均为热电偶,仪表内装的分度号包括:K,S,R,B,N,E,J,T<\/P><\/TD>

 <\/TD><\/TR>

B<\/P><\/TD>

全部通道均为4mA~20mA或1V~5V等电流、电压信号,需在订货时明确电流,电压信号的输入通道<\/P><\/TD>

 <\/TD><\/TR>

X<\/P><\/TD>

输入为热电阻、热电偶混用<\/P><\/TD>

 <\/TD><\/TR>

L<\/P><\/TD>

输入为热电阻,热电偶,4mA~20mA,0mA~10mA,1V~5V,0V~5V混用。需在订货时明确电流,电压信号的输入通道<\/P><\/TD>

 <\/TD><\/TR>

通讯接口<\/P><\/TD>

S0<\/P><\/TD>

无通讯接口<\/P><\/TD><\/TR>

S1<\/P><\/TD>

RS-232接口<\/P><\/TD>

 <\/TD><\/TR>

S2<\/P><\/TD>

RS-485接口<\/P><\/TD>

 <\/TD><\/TR>

打印功能(带硬件时钟)<\/P><\/TD>

P0<\/P><\/TD>

无打印接口<\/P><\/TD><\/TR>

P1<\/P><\/TD>

分体打印接口<\/P><\/TD>

 <\/TD><\/TR>

P2<\/P><\/TD>

一体化打印接口(于D型仪表)<\/P><\/TD>

 <\/TD><\/TR>

仪表电源<\/P><\/TD>

V0<\/P><\/TD>

220V AC<\/P><\/TD><\/TR>

V1<\/P><\/TD>

24V DC<\/P><\/TD>

 <\/TD><\/TR>

V2<\/P><\/TD>

其它<\/P><\/TD>

 <\/TD><\/TR>

扩展报警功能<\/P><\/TD>

T<\/P><\/TD>

T:表示有扩展报警功能,将标准2点扩展为4点,没有可省略<\/P><\/TD><\/TR>

多点控制单元(XSLCU)接口<\/P><\/TD>

C<\/P><\/TD>

C:表示有XSLCU接口,没有可省略<\/P><\/TD><\/TR>

非标准功能<\/P><\/TD>

N<\/P><\/TD>

N:表示非标功能,没有可省略<\/P><\/TD><\/TR><\/TBODY><\/TABLE>$detailsplit$

参考资料编辑区域<\/P>$detailsplit$

1<\/SPAN>功能特点<\/A><\/P>

2<\/SPAN>主要技术指标<\/A><\/P>

3<\/SPAN>巡检仪的选型<\/A><\/P><\/DIV>$detailsplit$

1<\/SPAN>功能特点<\/A><\/I><\/P>

2<\/SPAN>主要技术指标<\/A><\/I><\/P>

3<\/SPAN>巡检仪的选型<\/A><\/I><\/P>","ClassID":"6891","Sort":"0","IsShow":"1","CreateTime":"2015/4/14 11:12:35","UpdateTime":"2015/4/14 11:13:26","RecommendNum":"1","Picture":"2/20150414/635646067299844402342.jpg","PictureDomain":"img66","ParentID":"33"},{"ID":"584","Title":"微机消谐","UserID":"85142","UserName":"znyibiao123","Author":"李芳","CompanyID":"66369","CompanyName":"株洲三达电子制造有限公司","HitNumber":"10","Detail":"

AK-XXT微机消谐<\/p>$detailsplit$

1<\/strong>产品概述<\/h2>

2<\/strong>概述<\/h2>

    在电力系统中,铁磁谐振频繁发生,谐振时会产生过电压,严重威胁系统安全。铁磁谐振过电压可以在<\/span><\/span>3<\/span><\/span>~220<\/span><\/span>千伏的任何系统中发生,特别是在<\/span><\/span>35<\/span><\/span>千伏及以下的电网中,几乎所有的内部过电压事故均由铁磁谐振引起。铁磁谐振引起的过电压持续时间长,甚至可能长期存在。在分频谐振时,一般过电压并不高,但是<\/span><\/span>PT<\/span><\/span>的电流大,易使<\/span><\/span>PT<\/span><\/span>过热而爆炸;基波和倍频谐振时,一般电流不大,但是过电压很高,常使设备绝缘损坏,造成恶性事故。<\/span><\/span><\/p>

    ZHWX<\/span><\/span>系列电力微机消谐装置是我公司研制的新型智能化电力谐振消除装置,使用简单方便,无需维护,能迅速地消除各种频率的铁磁谐振,准确率高。同时可根据用户需要将相关信息打印或通过通信接口传给上级监控系统,适用于无人值守变电站。<\/span><\/span><\/p>

     (1)功能及特点<\/p>